VIII Jornada grupo GEIO

GRUPO DE ESTUDIO DE INFECCIONES OSTEOARTICULARES

NUEVOS RETOS EN INFECCIÓN OSTEOARTICULAR (IOA)

Madrid GEIO · SEIMC

Mariló Macià Romero

Servicio de Microbiología Instituto de Investigación Sanitaria de les Illes Balears (IdISBa) Hospital Universitario Son Espases

SUMARIO BACILOS GRAM NEGATIVOS MULTIRRESISTENTES BIOFILMS INFECCIÓN **OSTEOARTICULAR OPCIONES DE TRATAMIENTO ANTIBIÓTICO**

INFECCIÓN OSTEOARTICULAR

- Poco frecuentes
- Complejas
- Asociadas con la formación de biopelículas
- Difícil manejo médico-quirúrgico
- Necesitan abordaje multidisciplinar
- Diagnóstico etiológico → tratamiento antibiótico
- Los objetivos conjuntos del tratamiento son:
 - Erradicar la infección
 - Aliviar el dolor
 - Restaurar la función articular

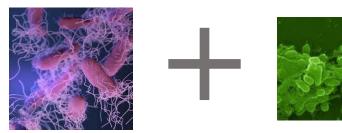
INFECCIÓN OSTEOARTICULAR

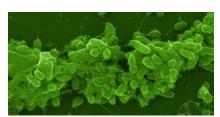
- Infección asociada a prótesis articular
 - •Incidencia media (España) 3-4%
 - •Factores de riesgo
 - Cirugías previas (artroplastia)
 - Neoplasia
 - •Edad avanzada, obesidad, diabetes mellitus, tabaquismo, inmunosupresión, etc
 - •Mortalidad \rightarrow edad 0,4-1,2% <65 años y 2-7% >80 años
- Tratamiento
 - Complejo y multidisciplinar
 - •Desbridamiento agresivo combinado con antibioterapia dirigida (inf. aguda)
 - •Recambio en uno o en dos tiempos (inf. crónica)
 - Tratamiento supresor crónico
 - Artrodesis
 - Amputación de la extremidad

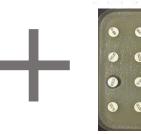
Ariza J, et al; Executive summary of management of prosthetic joint infections. Clinical practice guidelines by the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). Enferm Infecc Microbiol Clin. 2017 Mar;35(3):189-195.

INFECCIÓN OSTEOARTICULAR - PRÓTESIS ARTICULAR

- Etiología
 - Grampositivos 65% (S. aureus y CGP CN)
 - BGN aerobios


(E. coli, P. mirabilis y **P. aeruginosa**) 5%-10% (~20%)


- Anaerobios 1-4%
- Infecciones polimicrobianas ~20% (SARM y anaerobios)
- 7% ningún microorganismo


	Recommended therapy	Alternative in patients allergic to β-lactams
Initial phase of treatme	nt (planktonic bacteria)	
Empirical treatment		
	Vancomycin or daptomycin or cloxacillin iv &	Vancomycin or daptomyci
	+	iv
	ceftazidime or cefepime or meropenem iv	+
Targeted treatment		•
Gram-negative	β-lactam iv ** [†]	Ciprofloxacin iv
Fram nogativo	eatment (biofilm-embedded bacteria)	
Gram-negative pacilli Treatment of choice		
pacilli Treatment of choic		-
pacilli Treatment of choic	e Ciprofloxacin po	-
Treatment of choice Alternatives withou	e Ciprofloxacin po ut fluoroquinolones β-lactam iv ± colistin iv or	- Aztreonam iv ± colistin
Treatment of choic Alternatives withou	e Ciprofloxacin po ut fluoroquinolones	- Aztreonam iv ± colistin -
Dacilli Treatment of choic Alternatives withou	e Ciprofloxacin po It fluoroquinolones β-lactam iv ± colistin iv or β-lactam iv ± fosfomycin iv	- Aztreonam iv ± colistin -
Alternatives agains	e Ciprofloxacin po ut fluoroquinolones β-lactam iv ± colistin iv or β-lactam iv ± fosfomycin iv CMX	- Aztreonam iv ± colistin - Aztreonam iv (CI) + colis

Ariza J, et al; Executive summary of management of prosthetic joint infections. Clinical practice guidelines by the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). Enferm Infecc Microbiol Clin. 2017 Mar;35(3):189-195.

INFECCIÓN OSTEOARTICULAR - PRÓTESIS ARTICULAR

• BGN MDR \$\frac{1}{5},3% (2003 y 2004) al 8,1% (2011 y 2012)

- *E. coli*, $2 \rightarrow 4,3\%$
- P. aeruginosa del $0.7 \rightarrow 1.8\%$
- Preocupación R carbapenems

13,5% (Fantoni et al. 2019)

TABLE 3 GNB biofilm formation^a

	Biofilm	Percentage biofilm producer (%)										
Strain (n)	formation (Q1 to Q3) (<i>n</i> -fold OD _c)	Strong	Moderate	Weak	No produce							
A. baumanii (1)	2.5 (1.9 to 4)	0	1 (100%)	0	0							
C. freundii (1)	3.4 (1.9 to 3.9)	0	1 (100%)	0	0							
C. koseri (1)	1.3 (0.7 to 1.6)	0	0	1 (100%)	0							
E. cloacae (2)	7.2 (5.6 to 8.4)	2 (100%)	0	0	0							
E. hormaechei (2)	1.7 (0.7 to 3.6)	0	1 (50%)	1 (50%)	0							
E. coli (8)	2.1 (1.2 to 3.3)	1 (12.5%)	4 (50%)	3 (37.5%)	0							
K. pneumoniae (7)	4.9 (2.3 to 7.4)	4 (71.4%)	2 (14.3%)	1 (14.3)	0							
M. morganii (3)	5.9 (2.1 to 13.45)	2 (66.7%)	0	1 (33.3%)	0							
P. mirabilis (8)	3.3 (2.2 to 5)	2 (25%)	5 (62.5%)	1 (12.5%)	0							
P. vulgaris (1)	1.3 (1.1 to 2.4)	0	0	1 (100%)	0							
P. stuartii (1)	2.9 (2.3 to 4.6)	0	1 (100%)	0	0							
P. aeruginosa (7)	10.2 (6.4 to 19.6)	7 (100%)	0	0	0							
R. ornithinolytica (1)	0.9 (0.7 to 1.3)	0	0	0	1 (100%)							
S. marcescens (3)	2.6 (1.7 to 5)	1 (33.3%)	1 (33.3%)	1 (33.3%)	0							
Total	3.6 (1.8 to 6.8)	19 (41.3%)	16 (34.8%)	10 (21.8%)	1 (2.1%)							

^aGNB, Gram-negative bacilli; OD_c, cutoff value three standard deviations (SD) above the mean optical density; Q, quartile.

TABLE 4 Planktonic and biofilm-growing bacteria antimicrobial activity among EB and NFGNB^a

	EB (18)									NFGNB (8)									
	MIC		MBC		MBIC	MBEC		MBEC I		MIC		MBC		MBIC		MBEC			
Antimicrobial	s	R	S	R	s	R	S	R	S	R	S	R	S	R	S	R			
AMK	33 (87%)	5 (13%)	21 (55%)	17 (45%)	30 (79%)	8 (21%)	0	38 (100%)	6 (75%)	2 (25%)	6 (75%)	2 (25%)	5 (63%)	3 (37%)	0	8 (100%)			
CRO	25 (65%)	13 (35%)	19 (50%)	19 (50%)	20 (53%)	18 (47%)	0	38 (100%)	NT	NT	NT	NT	NT	NT	NT	NT			
CAZ	26 (67%)	12 (33%)	21 (55%)	17 (45%)	22 (58%)	16 (42%)	0	100 (100%)	8 (100%)	0 (0%)	7 (88%)	1 (12%)	2 (25%)	6 (75%)	0	100 (100%			
CIP	20 (53%)	18 (47%)	17 (45%)	21 (55%)	17 (45%)	21 (55%)	0	100 (100%)	5 (63%)	3 (37%)	3 (37%)	5 (63%)	5 (63%)	3 (37%)	0	100 (100%			
CO	19 (50%)	19 (50%)	17 (45%)	21 (55%)	13 (35%)	25 (65%)	0 (0%)	100 (100%)	8 (100%)	0 (0%)	7 (88%)	1 (12%)	2 (25%)	6 (75%)	0 (0%)	100 (100%			
GE	21 (55%)	17 (45%)	9 (24%)	29 (76%)	20 (53%)	18 (47%)	0 (0%)	100 (100%)	6 (75%)	2 (25%)	4 (50%)	4 (50%)	4 (50%)	4 (50%)	0 (0%)	100 (100%			
MP	36 (95%)	2 (5%)	36 (95%)	2 (5%)	35 (92%)	3 (8%)	0 (0%)	100 (100%)	6 (75%)	2 (25%)	6 (75%)	2 (25%)	5 (63%)	3 (37%)	0 (0%)	100 (100%			

The table shows planktonic (MIC and minimal bactericidal concentration [MBC]) and biofilm-growing bacteria (minimal biofilm inhibitory concentration [MBIC] and minimal biofilm eradication concentration [MBEC]) antimicrobial activity among Enterobacteriaceae (EB) and nonfermenting Gram-negative bacilli (NFGNB). AMK, amikacin; CRO, ceftriaxone; CAZ, ceftazidime; CIP, ciprofloxacin; GE, gentamicin; CO, colistin; MP, meropenem; NT, not tested; R, resistant; S, sensitive.

BGN MULTIRRESISTENTES

DEFINICIONES

- ✓ MDR: multirresistente; resistente a algún antibiótico de 3 grupos diferentes

 (e.g., aminoglucósidos, cefalosporinas anti-*Pseudomonas*, carbapenems,

 fluoroquinolonas, β-lactámicos + inhibidores β-lactamasa, monobactams y polimixinas)
- ✓ XDR: extensamente resistente; resistente a todos los grupos de antibióticos excepto a uno o dos de ellos
- DTR: difícil de tratar; resistente a antipseudomónicos de primera línea (quinolonas y β-lactámicos clásicos), (IDSA)
- **✓ PDR:** panresistente; resistente a todos los (grupos) antibióticos

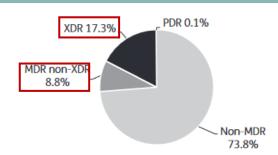

BGN MULTIRRESISTENTES – Pseudomonas aeruginosa

TABLE 1 Main genes known to be involved in P. aeruginosa mutational antibiotic resistance

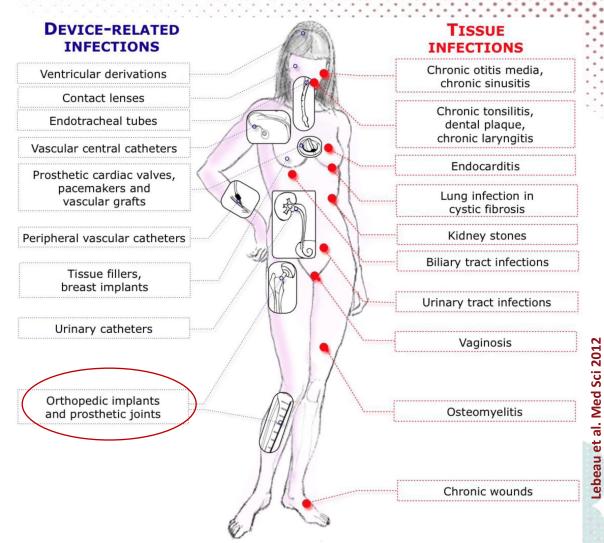
Gene(s)	Resistance mechanism	Antibiotics affected
gyrA	Quinolone target modification (DNA gyrase)	Fluoroquinolones
gyrB	Quinolone target modification (DNA gyrase)	Fluoroquinolones
parC	Quinolone target modification (DNA topoisomerase IV)	Fluoroquinolones
parE	Quinolone target modification (DNA topoisomerase IV)	Fluoroquinolones
pmrA, pmrB, phoQ, cprS, colR, colS	Lipopolysaccharide modification (addition of the 4-amino-4-deoxy-L-arabinose moiety to the lipid A portion)	Polymyxins
parR	Lipopolysaccharide modification (addition of the 4-amino-4-deoxy-L-arabinose molety to the lipid A portion)	Polymyxins
	OprD downregulation	Imipenem, meropenem
	MexEF-OprN hyperproduction	Fluoroquinolones
	MexXY hyperproduction	Fluoroquinolones, aminoglycosides, cefepime
parS	Lipopolysaccharide modification (addition of the 4-amino-4-deoxy-μ-arabinose moiety to the lipid A portion)	Polymyxins
	OprD downregulation	Imipenem, meropenem
	MexEF-OprN hyperproduction	Fluoroquinolones
	MexXY hyperproduction	Fluoroquinolones aminoglycosides cefepime
mexR, nalC, nalD	MexAB-OprM hyperproduction	Fluoroquinolones, ceftazidime, cefepime, piperacillin-tazobactam, meropenem, ceftazidime-avibactam
nfxB	MexCD-OprJ hyperproduction	Fluoroquinolones, cefepime
mexS	MexEF-OprN hyperproduction	Fluoroquinolones
	OprD downregulation	Imipenem, meropenem
mexT	MexEF-OprN hyperproduction	Fluoroquinolones
	OprD downregulation	Imipenem, meropenem
cmrA, mvaT, PA3271	MexEF-OprN hyperproduction	Fluoroquinolones
mexZ, PA5471.1, amgS	MexXY hyperproduction	Fluoroquinolones, aminoglycosides, cefepime
oprD	OprD porin inactivation	Imipenem, meropenem
ampC	AmpC structural modification	Ceftolozane-tazobactam, ceftazidime-avibactam
ampD, ampDh2, ampDh3, ampR, dacB, mpl	AmpC hyperproduction	Ceftazidime, cefepime, piperacillin-tazobactam
ftsl	β-Lactam target modification (PBP3)	Ceftazidime, cefepime, piperacillin-tazobactam, ceftolozane-tazobactam, ceftazidime-avibactam, meropenem
fusA1	Aminoglycoside target modification (elongation factor G)	Aminoglycosides
glpT	Inactivation of transporter protein GlpT	Fosfomycin
rpoB	Rifampin target modification, RNA polymerase β-chain	Rifampin

Resistencia horizontal

- •ESBLs
- •Carbapenemasas (MBLs clase B)
- •Enzimas modificantes de aminoglicósidos

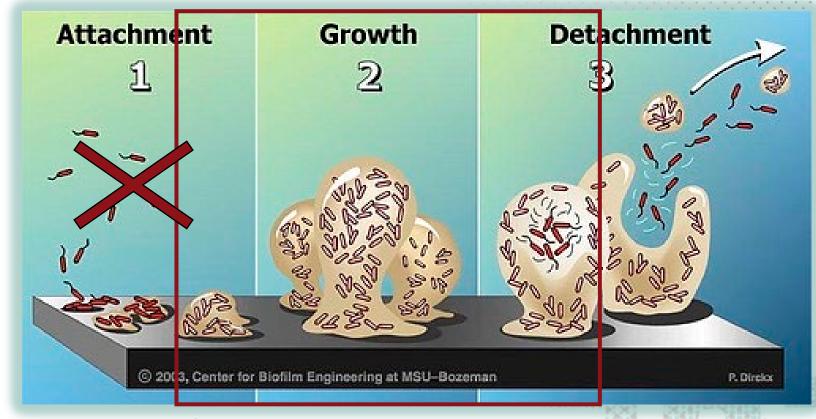
Figure 2. Distribution of susceptibility profiles among *P. aeruginosa* isolates from Spanish hospitals. del Barrio-Tofiño et al. 2019

BIOFILMS



- 65-80% de todas las infecciones
- Ubicuidad
- Amplio rango de infecciones

PERSISTENCIA
ERRADICACIÓN EXTREMADAMENTE
DIFÍCIL



RESISTENCIA A LOS ANTIBIÓTICOS Y AL SISTEMA INMUNE

BIOFILMS

PREVENCIÓN TRATAMIENTO ANTIBIÓTICO

↑ MADURACIÓN BIOFILM ↑ DIFICULTAD DE ERRADICACIÓN

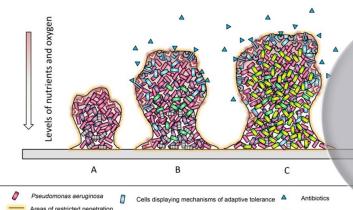
RECAMBIO PRÓTESIS

BIOFILMS ≈ 100-1000 VECES MÁS RESISTENTES A LOS ANTIBIÓTICOS

Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections

Philip S Stewart^{1,2}, Tianyu Zhang^{1,3}, Ruifang Xu^{1,2}, Betsey Pitts¹, Marshall C Walters^{1,2,5}, Frank Roe^{1,6}, Judith Kikhney⁴

PlosOne 2016


Diffusion Retardation by Binding of Tobramycin in an Alginate Biofilm Model

Bao Cao¹, Lars Christophersen¹, Mette Kolpen^{1,2}, Peter Østrup Jensen¹, Kim Sneppen³, Niels Høiby^{1,2}, Claus Moser¹, Thomas Sams⁴*

Mol Microbiol 2008

Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes.

Pamp SJ¹, Gjermansen M, Johansen HK, Tolker-Nielsen T.

Tolerancia

Increased mutability of Pseudomonas aeruginosa in biofilms

K. Driffield[†], K. Miller, J. M. Bostock, A. J. O'Neill and I. Chopra*

PLoS ONE 2009

Role of Mutation in *Pseudomonas aeruginosa* Biofilm **Development**

Tim C. R. Conibear, Samuel L. Collins, Jeremy S. Webb*

AAC 2011

Dynamics of Mutator and Antibiotic-Resistant Populations in a Pharmacokinetic/Pharmacodynamic Model of Pseudomonas aeruginosa Biofilm Treatment[∇]

María D. Macià, 1* José L. Pérez, 1 Soeren Molin, 2 and Antonio Oliver 1

Antimicrohal Agents and Chemotherapy, Apr. 2009, p. 1552–1560 0066-4804/09/\$08.00+0 doi:10.1128/AAC.01264-08 Copyright © 2009, American Society for Microbiology. All Rights Reserved

Azithromycin in Pseudomonas aeruginosa Biofilms: Bactericidal Activity and Selection of nfxB Mutants[∇]

Xavier Mulet, María D. Maciá, Ana Mena, Carlos Juan, José L. Pérez, and Antonio Oliver'

J Bact 2016

Gene Transfer Efficiency in Gonococcal Biofilms: Role of Biofilm Age, Architecture, and Pilin Antigenic Variation

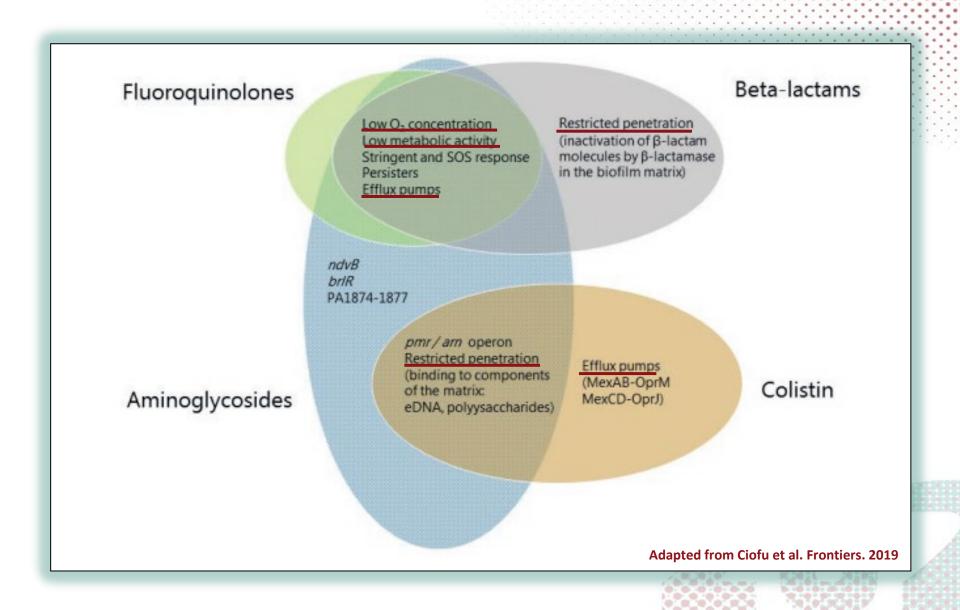
Resistencia adaptativa

Dynamics and Spatial Distribution of β-Lactamase Expression in Pseudomonas aeruginosa Biofilms

Niels Bagge, 1* Morten Hentzer, 2 Jens Bo Andersen, 2 Oana Ciofu, 1

Mutacional

Resistencia


adquirida

Hipermutabilidad

Transferencia horizontal genes

Macià, M.D., Oliver, A. (2022). vol 11. Springer, Cham.

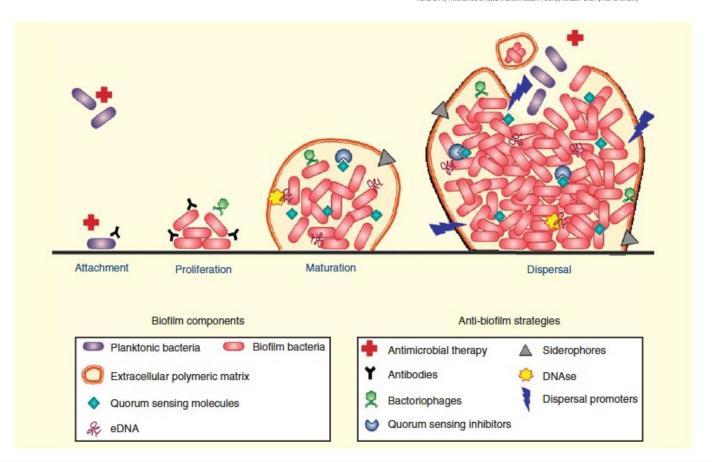
BIOFILMS - RESISTENCIA A LOS ANTIBIÓTICOS

COMBINACIÓN DE ESTRATEGIAS TERAPÉUTICAS

Int J Antimicrob Agents 2016

Reinforcement of the bactericidal effect of ciprofloxacin on Pseudomonas aeruginosa biofilm by hyperbaric oxygen treatment

Mette Kolpen ^{a,b}, Nabi Mousavi ^a, Thomas Sams ^c, Thomas Bjarnsholt ^{a,b}, Oana Ciofu ^b, Claus Moser ^a, Michael Kühl ^{d,e}, Niels Høiby ^{a,b}, Peter Østrup Jensen ^{a,*}


ket of med of metric Engineering and Biotechnology (2022) 20:133 and Biotechnology and Biotechnology and Biotechnology

RESEARCH

Open Access

Bacteriophage as a potential therapy to control antibiotic-resistant *Pseudomonas* aeruginosa infection through topical application onto a full-thickness wound in a rat model

Nouran Rezk¹, Abdallah S. Abdelsattar^{1,2}, Doaa Elzoghby¹, Mona M. Agwa³, Mohamed Abdelmoteleb⁴
Rania G. Alv², Mohamed S. Fayez¹, Kareem Essam¹, Rishoy M. Zaki⁶ and Ayman El-Shibiny^{1,7*}

TRATAMIENTO CON ANTIBIÓTICOS

EVITAR DESARROLLO DE RESISTENCIA

OPTIMIZACIÓN PK/PD: ALTAS DOSIS (VÍA TÓPICA), INFUSIÓN CONTINUA B-LACTÁMICOS

> COMBINACIONES DE ANTIBIÓTICOS

TERAPIA SECUENCIAL

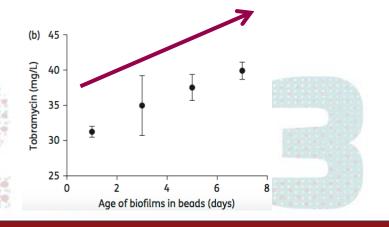
NUEVOS ANTIBIÓTICOS

OPTIMIZACIÓN PK/PD (ALTAS DOSIS (VÍA TÓPICA), INFUSIÓN CONTINUA B-LACTÁMICOS)

In vitro pharmacokinetics/pharmacodynamics of continuous ceftazidime infusion alone and in combination with colistin against Pseudomonas aeruginosa biofilm

✓ Optimización PK/PD antibióticos en biofilm

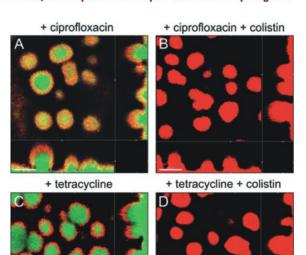
✓ Considerar índices como:


- ✓ AUC/MBIC ó [Cmax]/MBIC ratio
- ✓ β-lactámicos: T>CMI 100% → infusión continua/extendida?¿
- ✓ Concentraciones mucho más altas → administración local/tópica?¿
- ✓ Modelo bicompartimental → biofilm tercer compartimento?¿

Joan Gómez-Junyent ab, Oscar Murillo ba, Heidi H. Yua, Mohammad A.K. Azada, Hasini Wickremasinghea, Raul Rigo-Bonninc, Eva Benaventb, Javier Arizab, Jian Lia

Antibiotic penetration and bacterial killing in a Pseudomonas aeruginosa biofilm model

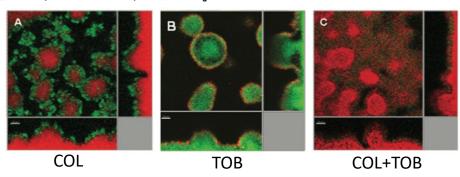
Bao Cao^{1*}, Lars Christophersen¹, Kim Thomsen¹, Majken Sønderholm², Thomas Bjarnsholt^{1,2}, Peter Østrup Jensen¹, Niels Høiby¹ and Claus Moser¹


COMBINACIONES DE ANTIBIÓTICOS

Antibióticos con diferentes mecanismos de acción y perfiles de resistencia

Molecular Microbiology (2008) 68(1), 223-240 ■

doi:10.1111/j.1365-2958.2008.06152


Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes

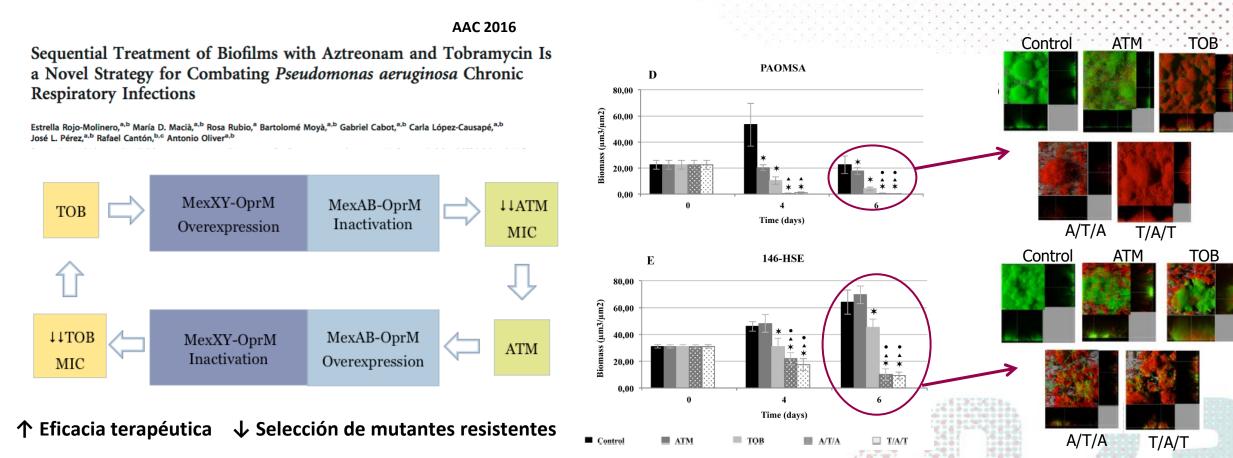
Colistin-Tobramycin Combinations Are Superior

to Monotherapy Concerning the Killing of Biofilm *Pseudomonas aeruginosa*

Gloria Herrmann, Liang Yang, Hong Wu, Zhijun Song, Hengzhuang Wang, Niels Høiby, Martina Ulrich, Søren Molin, Joachim Riethmüller, and Gerd Döring

J Antimicrob Chemother 2015; **70**: 3357–3365 doi:10.1093/jac/dkv281 Advance Access publication 28 September 2015 Journal of Antimicrobial Chemotherapy

- ✓ Mayor eficacia que monterapia
 - ✓ Efecto sinérgico
 - ✓ Evita resistencia mutacional

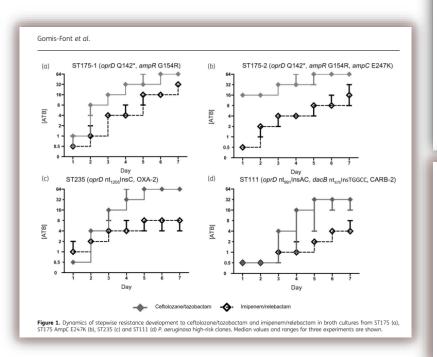

- Aumento de toxicidad
 - ✓ Interacciones
 - ✓ Aumento coste

Selección potencial de multirresistencia

Osteoarticular infection caused by MDR *Pseudomonas aeruginosa*: the benefits of combination therapy with colistin plus β -lactams \checkmark

TERAPIA SECUENCIAL

Basadas en mecanismos de resistencia antagónicos (sensibilidad colateral)



El tratamiento secuencial fue superior a las terapias individuales

NUEVOS ANTIBIÓTICOS

Nuevas combinaciones de β-lactámicos e inhibidores de β-lactamasas

- TL/TZ
- CZ/AV
- IM/REL

Pseudomonas aeruginosa Ceftolozane-Tazobactam Resistance Development Requires Multiple Mutations Leading to Overexpression and Structural Modification of AmpC

Gabriel Cabot, ^a Sebastian Bruchmann, ^b Xavier Mulet, ^a Laura Zamorano, ^a Bartolomé Moyà, ^a Carlos Juan, ^a Susanne Haussler, ^b Antonio Oliver ^a

J Antimicrob Chemother 2017; **72**: 1109–1117 doi:10.1093/jac/dkw535 Advance Access publication 10 January 2017 Journal of Antimicrobial Chemotherapy

Potentiation of ceftazidime by avibactam against β -lactam-resistant Pseudomonas aeruginosa in an in vitro infection model

Sherwin K. B. Sy¹, Luning Zhuang¹, Marie-Eve Beaudoin², Philipp Kircher¹,
Maria A. M. Tabosa¹, Noely C. T. Cavalcanti¹, Christian Grunwitz¹, Sebastian Pieper¹, Virna J. Schuck²,
Wright W. Nichols² and Hartmut Derendorf¹*

J Antimicrob Chemother https://doi.org/10.1093/jac/dkab496 Journal of Antimicrobial Chemotherapy

Comparative analysis of in vitro dynamics and mechanisms of ceftolozane/tazobactam and imipenem/relebactam resistance development in Pseudomonas aeruginosa XDR high-risk clones

María A. Gomis-Font^{1,2}, Gabriel Cabot () ^{1,2}, Silvia López-Argüello¹, Laura Zamorano^{1,2}, Carlos Juan^{1,2},

Bartolomé Moyá () ^{1,2} and Antonio Oliver^{1,2}*

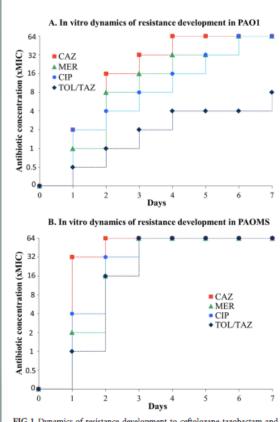


FIG 1 Dynamics of resistance development to ceftolozane-tazobactam and comparators. The modal values for three experiments are shown.

↑Actividad frente *P. aeruginosa* Inhibición de AmpC

NUEVOS ANTIBIÓTICOS EN *BIOFILM*

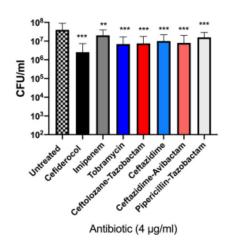
J Antimicrob Chemother 2010; **65**: 1399-1404 doi:10.1093/jac/dkq143 Advance Access publication 30 April 2010 Journal of Antimicrobial Chemotherapy

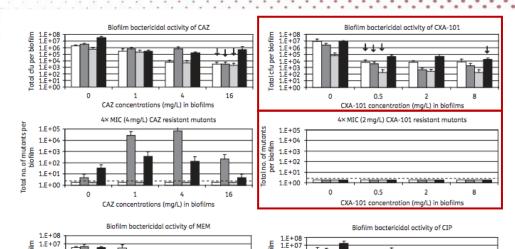
TL/TZ

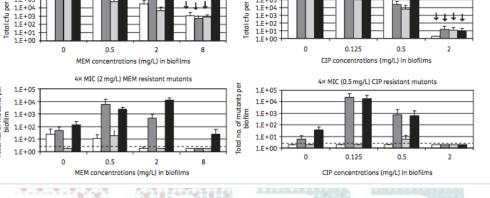
Anti-biofilm and resistance suppression activities of CXA-101 against chronic respiratory infection phenotypes of *Pseudomonas aeruginosa* strain PAO1

Elena Riera¹, María D. Macià¹, Ana Mena¹, Xavier Mulet¹, José L. Pérez¹, Yigong Ge² and Antonio Oliver^{1*}

CEFIDEROCOL


MECHANISMS OF ACTION: PHYSIOLOGICAL EFFECTS




AAC 2021

Cefiderocol Retains Antibiofilm Activity in Multidrug-Resistant Gram-Negative Pathogens

Christine A. Pybus, a Christina Felder-Scott, b Victor Obuekwe, a David E. Greenberga,

Buena actividad anti biofilm no dependiente de la concentración

COMBINACIONES CON NUEVOS ANTIBIÓTICOS

Efficacy of ceftolozane/tazobactam, alone and in combination with colistin, against multidrug-resistant *Pseudomonas aeruginosa* in an *in vitro* biofilm pharmacodynamic model

Joan Gómez-Junyent^a, Eva Benavent^a, Yanik Sierra^b, Cristina El Haj^a, Laura Soldevila^a, Benjamín Torrejón^c, Raul Rigo-Bonnin^d, Fe Tubau^b, Javier Ariza^{a,e}, Oscar Murillo^{a,e,*}

EXPERIMENTAL THERAPEUTICS

Efficacy of Ceftolozane-Tazobactam in Combination with Colistin against Extensively Drug-Resistant *Pseudomonas aeruginosa*, Including High-Risk Clones, in an *In Vitro* Pharmacodynamic Model

María Montero, Sandra Domene Ochoa, Carla López-Causapé, Brian VanScoy, Sonia Luque, Luisa Sorlí, Núria Campillo, Ariadna Angulo-Brunet, Eduardo Padilla, Núria Prim, Virginia Pomar, Alba Rivera, Santiago Grau, Paul G. Ambrose, Mantonio Oliver, Juan P. Horcajada

TERAPIA SECUENCIAL CON NUEVOS ANTIBIÓTICOS

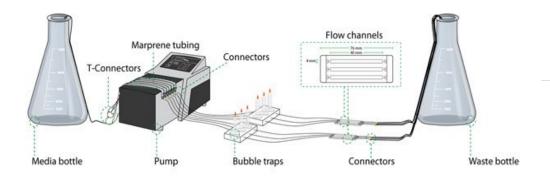
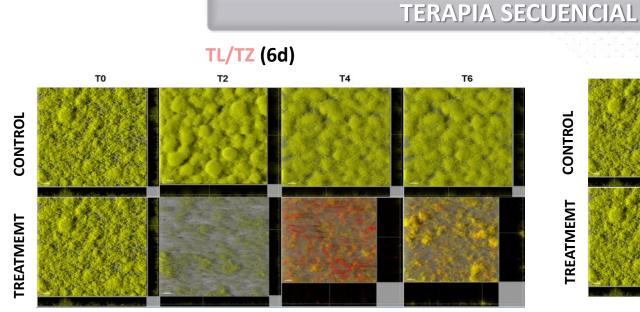
- Nuevas combinaciones β-lactámicos/inhibidores β-lactamasas → TL/TZ → opción prometedora
 - No exento de desarrollo de resistencia mutacional
 - La resistencia a TL/TZ mediada por mutaciones específicas en el Ω loop de AmpC está asociada a sensibilidad a los carbapenémicos (IM)
 - Basándonos en este mecanismo de resistencia antagónica, TL/TZ → IM podría evitar el desarrollo de mutantes resistentes a TL/TZ, siendo quizás una estrategia terapéutica prometedora en biopelículas XDR de *P. aeruginosa*
- La combinación del carbapenem IM con RL → estable frente a la asociación de inactivación de
 OprD + sobreexpresión de AmpC

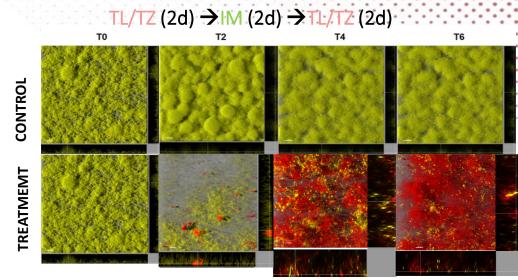
TERAPIA SECUENCIAL

TL/TZ 4/4 μg/ml (6d)

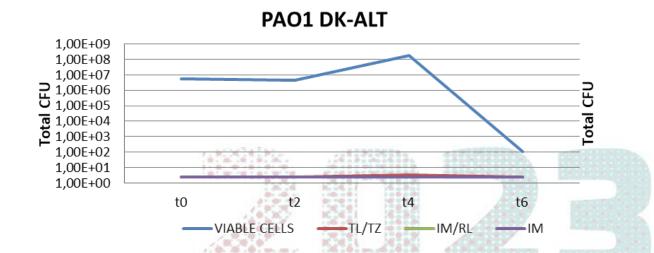
TL/TZ (2d) \rightarrow IM (2d) \rightarrow TL/TZ (2d)

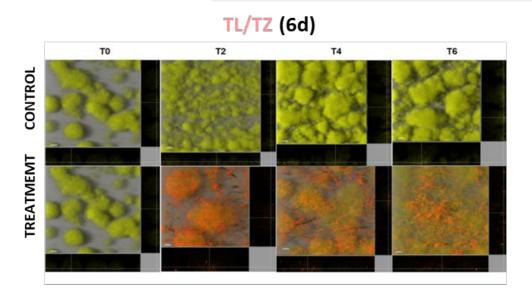
IM/RL 2/4 μg/ml (6d)

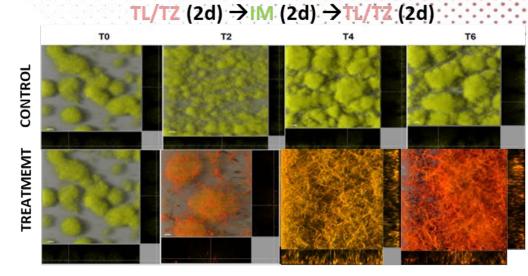



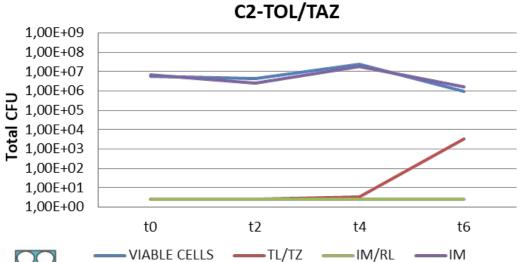

TABLE 3 Activity of imipenem-relebactam against isogenic XDR clinical isolates that had developed resistance to ceftolozane-tazobactam

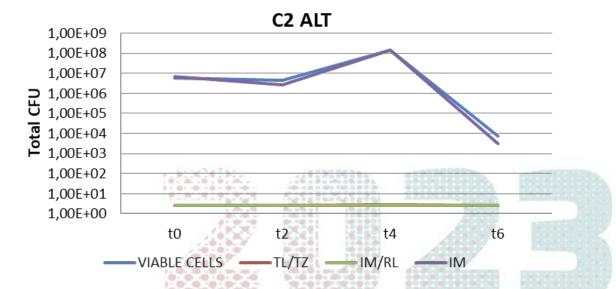
					MIC (μg	g/ml)			
		Isolation date			TOL-TZ	CAZ-AVI	IMP	IMI-REL	
Patient	Isolate ID	(day/mo/yr)	Sample type	MLST	$(S \leq 4)$	$(S \leq 8)$	$(S \leq 4)$	$(S \leq 4)$	β-Lactam resistance genotype
1	96-C4	18/7/2016	Bronchial aspirate	ST179	4	2	1	0.5	OXA-10
	96-H6	31/7/2016	Bronchial aspirate	ST179	32	32	8	2	OXA-14, OprD W417X
2	101-E5	7/11/2016	Bronchial aspirate	ST175	2	4	8	1	OprD Q142X, AmpR G154R
_	103-H8	14/12/2016	Bronchial aspirate	ST175	>32	>32	1	1	OprD Q142X, AmpR G154R, AmpC E247K
3 C2	_104-B7	16/12/2016	Urine	ST175		4	8	1	OprD Q142X, AmpR G154R
ČĪ]	104-19	7/1/2016	Blood	ST175	>32	32	1	0.5	OprD Q142X, AmpR G154R AmpC T96I
4	106-G2	3/2/2017	Bronchial aspirate	ST175	2	4	16	0.5	OprD Q142X, AmpR G154R
	107-H1	20/2/2017	Bronchial aspirate	ST175	>32	16	1	0.5	OprD Q142X, AmpR G154R, AmpC T96I
5	109-E9	27/3/2017	Sputum	ST175	2	4	16	1	OprD Q142X, AmpR G154R
	110-G8	7/4/2017	Bronchial aspirate	ST175	32	32	1	0.5	OprD Q142X, AmpR G154R, AmpC DelG229-E247
6	109-F7	28/3/2017	Bronchial aspirate	ST235	4	8	16	1	OXA-2, OprD 1bplns
	110-G6	19/4/2017	Bronchial aspirate	ST235	32	16	2	0.5	OXA-2, OprD 1bplns, AmpC F147L
7	114-G4	20/7/2017	Blood	ST179	8	8	8	1	OXA-10, OprD W6X
	117-C6	3/9/2017	Tracheal aspirate	ST179	32	>32	8	2	OXA-14, mexR 4bplns, mexZ 15bpDel, OprD W6X, ftsl (PBP3) F533L
8	116-A9	21/8/2017	Bronchial aspirate	ST175	2	4	8	1	OprD Q142X, AmpR G154R
	117-E3	4/9/2017	Tracheal aspirate	ST175	>32	8	2	0.5	OprD Q142X, AmpR G154R, AmpC E247G


Fraile-Ribot, PA. et al., (2020)



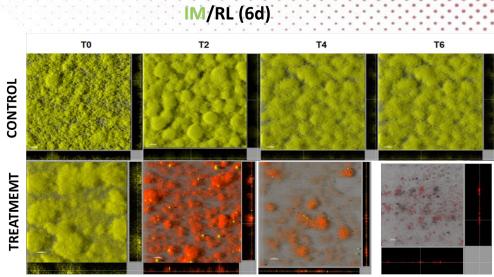

PAO1 DK-TOL/TAZ 1,00E+09 1,00E+08 1,00E+07 1,00E+06 1,00E+05 1,00E+04 1,00E+03 1,00E+02 1,00E+01 1,00E+00 to t2 t4 t6 VIABLE CELLS TOL/TAZ IMI/REL IMI (4µg/ml)

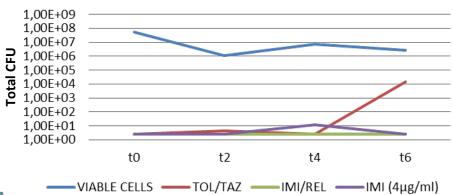




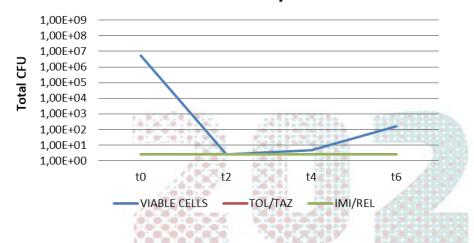
TERAPIA SECUENCIAL



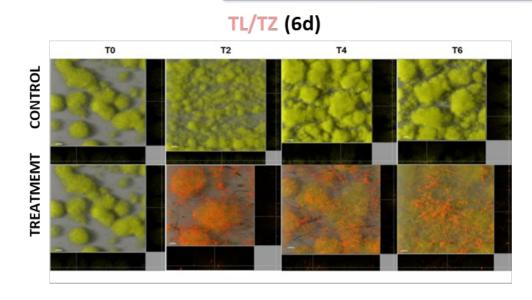


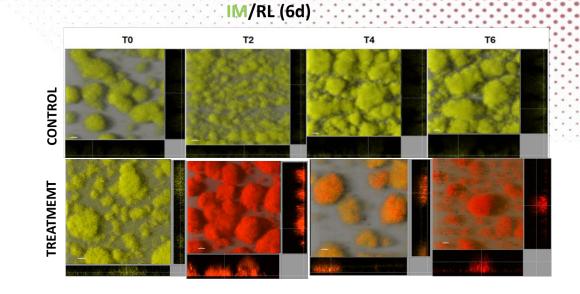

María Fernández-Billón et al. EBF 2022.

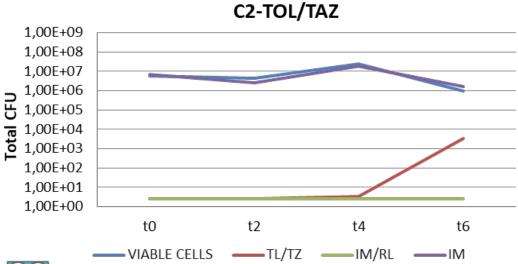
TERAPIA SECUENCIAL

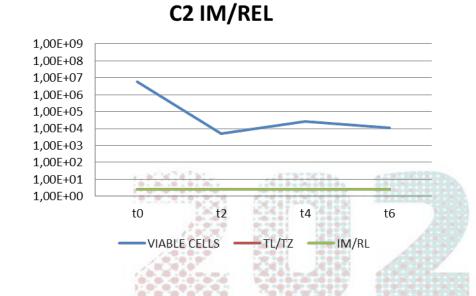


PAO1 DK-TOL/TAZ


PAO1-DK-IM/REL






María Fernández-Billón et al. EBF 2022.

TERAPIA SECUENCIAL

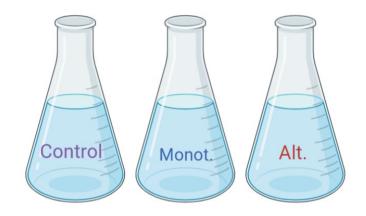
María Fernández-Billón et al. EBF 2022.

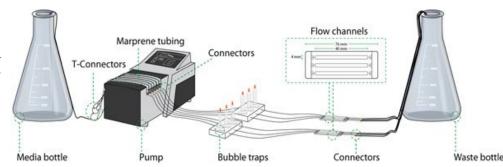
TERAPIA SECUENCIAL

COMPETICIONES

Table 1. Antimicrobial susceptibility and resistance mechanisms of the five pairs of ceftolozane/tazobactam-susceptible/resistant P. aeruginosa clinical isolates studied

											MIC (m	ıg/L)°						0.11
Patient	Isolate ID	Isolation date	Sample type	Treatment (period)	MLST	TIC (S ≤ 16)	TZP (S ≤ 16)	CAZ (S ≤ 8)	FEP (S ≤ 8)	TZC (S ≤ 4)	CAZ/AVI (S ≤ 8)	ATM (S ≤ 1)	IPM (S ≤ 4)	MEM (S ≤ 2)	TOB (S ≤ 4)	AMK (S ≤ 8)	CIP (S ≤ 0.5)	β-Lactam resistance genotype
1	96-C4	18/07/16	bronchial aspirate	MEM, TZC, CAZ, AMK (16/07-	ST179	>512	128	2	32	4	2	16	2	4	8	4	4	OXA-10
	96-H6	31/07/16	bronchial aspirate	04/08 discon- tinuous treatment)	ST179	>512	>256	>64	64	32	32	32	16	32	16	8	4	OXA-14, OprD W417X
2	101-E5	07/11/16	bronchial aspirate	TZC+CIP (04/12- 14/12)	ST175	128	64	16	16	2	4	16	16	8	32	4	>16	OprD Q142X, AmpR G154R
	103-H8	14/12/16	bronchial aspirate		ST175	512	32	64	32	>32	>32	64	4	16	32	4	>16	OprD Q142X, AmpR G154R,
3 C2	104-B7	16/12/16	urine	TZC (21/12-31/ 12)	ST175	128	64	16	16	2	4	16	16	8	32	4	>16	OprD Q142X, AmpR G154R
C1	104-19	07/01/16	blood		ST175	256	16	>64	32	>32	32	16	4	40	32	4	>16	OprD Q142X, AmpR G154R, AmpC T96I
4	106-G2	03/02/17	bronchial aspirate	TZC+CST (07/02- 22/02)	ST175	128	64	16	16	2	4	16	16	8	32	4	>16	OprD Q142X, AmpR G154R
	107-H1	20/02/17	bronchial aspirate		ST175	128	16	64	16	>32	16	16	4	4	32	4	>16	OprD Q142X, AmpR G154R, AmpC T96I
5	109-E9	27/03/17	sputum	TZC+CST (30/03- 12/04)	ST175	128	64	32	16	2	4	16	16	8	32	4	>16	OprD Q142X, AmpR G154R
	110-G8	07/04/17	bronchial aspirate		ST175	256	16	64	16	32	32	16	2	4	32	4	>16	OprD Q142X, AmpR G154R, AmpC DelG229- E247

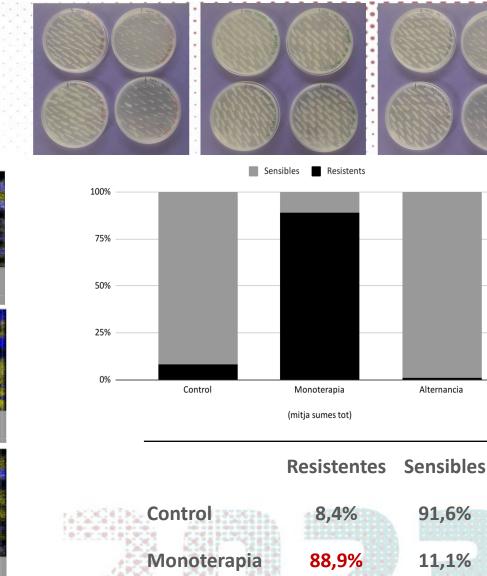

TIC, ticarcillin; TZP, piperacillin/tazobactam; CAZ, ceftazidime; FEP, cefepime; TZC, ceftolozane/tazobactam; CAZ/AVI, ceftazidime/avibactam; ATM, aztreonam; IPM, imipenem; MEM, meropenem; TOB, tobramycin; AMK, amikacin; CIP, ciprofloxacin; CST, colistin.


aEUCAST breakpoints indicated.

Fraile-Ribot, PA. et al., (2020)

Proporción: C1 1: 100 C2

Marcaje: C1-CFP y C2-YFP



Proporción: C1 1: 100 C2

Marcaje: C1-cfp y C2-yfp

T0 T2 T4 T6 Control Monoterapia TZ/TL Alternancia TL/TZ (2d) \rightarrow IM (2d) \rightarrow TL/TZ (2d)

Alternancia

1%

99%

MONOTERAPIA

ALTERNANCIA

CONTROL

CONCLUSIONES

- TL/TZ en monoterapia no erradica las biopelículas de P. aeruginosa XDR
- TL/TZ en monoterapia conduce a la selección y amplificación de mutantes resistentes
- La alternancia de TL/TZ con IM impide el desarrollo de mutantes resistentes a TL/TZ
- IM/RL es muy estable frente a los mecanismos de resistencia mutacionales más relevantes a los

betalactámicos de P. aeruginosa

- TL/TZ en alternancia con IM y IM/REL son tratamientos eficaces frente biopelículas de *P. aeruginosa* XDR
- Ninguno de los tratamientos consiguió erradicar los biofilms de P. aeruginosa XDR

CONCLUSIONES

- Nuevas estrategias terapéuticas, como las secuenciales, resultan prometedoras para evitar el desarrollo de resistencia a los antibióticos en los biofilms de P. aeruginosa
- El tratamiento de las infecciones relacionadas con biopelículas precisa siempre de estrategias combinadas y multifocales (erradicación muy difícil)
- Se necesitan más conocimientos:
 - estrategias terapéuticas que incluyan antibióticos nuevos (TL/TZ, IM/RL, cefiderocol) en combinación/alternancia con antiguos (COL/FOS) sobre biopelículas
 - evaluación nuevos antibióticos (cefepime/taniborbactam y cefepime/zidebactam) sobre biopelículas

GRACIAS POR LA ATENCIÓN

María Fernández-Billón

Elena Jordana-Lluch

Ainabet Llambias

Antonio Oliver

Resistencia antibiótica y patogenia de las infecciones bacterianas

