### Resistencias & Epidemiología

Eva Poveda

Division of Clinical Virology

INIBIC-Complexo Hospitalario Universitario de A Coruña

### Rapid Evolution of HCV Regimens:

Easier to take/tolerate, Short Duration, Pangenotypic, Higher SVR, Eventually Oral for all patients

SVR: 70-80% ≥ 90% ≥ 90% 2013 2014 2015 **Genotype 2&3 Genotype 2 Genotypes 1-6** P/R SOF+RBV 12 weeks SOF+LPV ± RBV **Genotypes 1 Genotype 3** ABT-450+ABT-267+ Telaprevir + P/R SOF+RBV 24 weeks ABT- 333 +RBV Boceprevir + P/R **Genotypes 1-4** DCV+ASU SOF+ P/R SOF+DCV **Genotypes 1&4** 

SMV+ P/R

#### **HCV** Resistance to DAA

#### **During DAA-based treatment:**

Rapid selection of resistance mutation may occur, eventually leading to viral break-through.

> Kieffer et al. Hepatology 2007; 46:631-9 Pilot-Matias et al. 46th EASL 2011, Abs1107

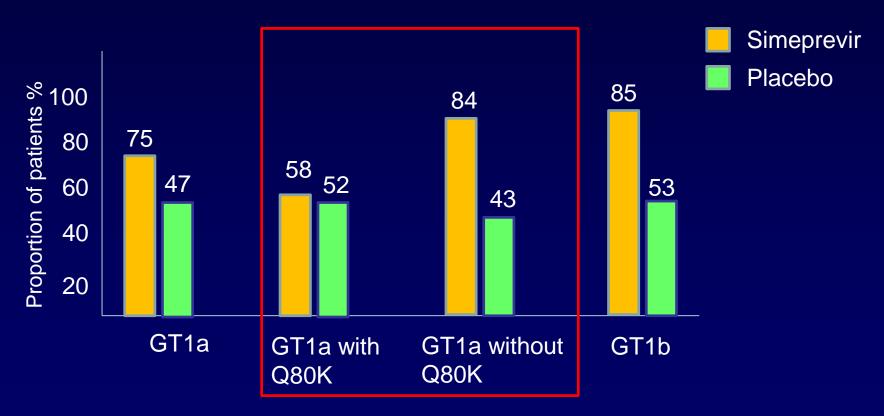
■ Several changes at different positions at the NS3 protease, NS5B polymerase, and NS5A protein have been associated with loss of susceptibility to DAAs.

Sarrazin et al. Gastroenterology 2010;138:447-62

### Main characteristics of the genotype activity and resistance of DAA classes.

|                                                    | Genotype activity                                                                                                                                                                                                                  | Resistance                                                                                                  | Key resistance mutations                                                                                                                                                 |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NS3<br>protease<br>inhibitors                      | ■ First PI generation: genotypes 1 (1b >1a) (Telaprevir & Boceprevir)  ■ Second wave and second PI generation: across all but genotype 3 (D168Q) (Simeprevir, faldaprevir, vaniprevir, asunaprevir, sovaprevir, MK-5172, ACH-2684) | Low genetic barrier High cross-resistance                                                                   | First PI generation: G1a: R155K, V36M G1b: V36M, T54A/S, A156T  Second wave and second PI generation: F43S, Q80K, R155K, D168A/E/H/T/V                                   |
| NS5<br>nucleos(ti)de<br>analogues<br>inhibitors    | Across all genotypes  Sofosbuvir displays less antiviral activity againts genotypes 3 (treatment duration 24 weeks of sofosbuvir+RBV).                                                                                             | High genetic barrier High cross-resistance                                                                  | Sofosbuvir*: G1a: \$282T+(I434M) G1b: \$282T G2a: \$282T+(T179A, M289L, I293L, M434T, and H479P) Mericitabine*: \$282T+(K81R,S84S/P, I239L, A300F/L/C, A421V, and Y586C) |
| NS5B non-<br>nucleoside<br>analogues<br>inhibitors | Genotypes 1 (1b>1a)                                                                                                                                                                                                                | Low genetic barrier Overlapping resistance profile for NNI-site 3 and site 5 inhibitors (C316Y/N and Y448H) | NNI-site 1: A421V, P495L/S, V499A<br>NNI-site 2: L419S, R422K, M423I/L/T<br>NNI-site 3: C316Y/NS368T, Y448C/H,<br>S556G<br>NNI-site 5: C316Y/N, Y448C/H                  |
| NS5A<br>inhibitors                                 | ■ First NS5A generation: genotypes 1-4 (1b>1a) (Daclatastivir, Ledipasvir, ABT-267) ■ Second NS5A generation: across all genotypes (MK-8742, ACH-3102, GS-5816, ABT-530)                                                           | Low genetic barrier High cross-resistance Improved genetic barrier                                          | G1a: M28T, Q30E/R, L31F/M/V, Y93C/H/N G1b: L31F/M/V, Y93C/H/N                                                                                                            |

Poveda et al, Antivir Research 2014 (in press)


# Prevalence of key polymorphisms at NS3/4A, NS5B polymerase and NS5A protein sequences associated with resistance to DAA agents.

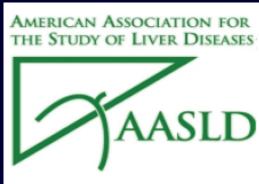
| Drug family                                      | Mutation | Fold-change<br>(EC50) | 1a     | 1b      | 2   | 3     | 4 | DAA agents potentially affected by specific polymorphisms                                                |
|--------------------------------------------------|----------|-----------------------|--------|---------|-----|-------|---|----------------------------------------------------------------------------------------------------------|
| NS3/4A protease inhibitors                       | Q80K     | 10,9                  | 19-48% | 0       | 0   | 0     | 0 | Simeprevir                                                                                               |
|                                                  | D168Q    | > 700                 | 0      | 0       | 0   | 99.2% | 0 | Second PI generation (with the exception of MK-5172)                                                     |
| NS5B non-<br>nucleoside<br>analogs<br>inhibitors | C316N    | > 30 *                |        | 13,3%   |     |       |   | Setrobuvir (NNI-site 3 inhibitors)<br>ABT-072 (NNI-site 3 inhibitors)<br>ABT-333 (NNI-site 3 inhibitors) |
|                                                  | L419V    | < 4                   |        |         | 13% |       |   | Filibuvir (NNI-site 2 inhibitors)<br>VX-222 (NNI-site 2 inhibitors)<br>GS-9669 (NNI-site 2 inhibitors)   |
| NS5A<br>inhibitors                               | L31M     | 3 - 341               |        | 7%      |     |       |   | First & second NS5A generation                                                                           |
|                                                  | Y93H     | 5,4 - 24              |        | 6-12,5% |     |       |   | First & second NS5A generation                                                                           |

<sup>\*</sup>In combination with mutations Y448H, D559G or Y555C.

### QUEST 1&2: Lower SVR12 rates to Simeprevir among patients with G1a Q80K polymorphism at baseline

Simeprevir (TMC435) with peginterferon/ribavirin for treatment of chronic HCV genotype 1 infection in treatment-naive patients: efficacy in difficult-to-treat patient sub-populations in the QUEST-1 and 2 Phase III trials.




Jacobson et al, EASL 2013, Abs 1122

#### How common is Q80K?

■ Prevalence of Q80K and across different regions in simeprevir phase IIB/III studies

|               | All HCV GT | HCV GT1a | HCV GT1b |
|---------------|------------|----------|----------|
| Overall       | 13.7%      | 29.5%    | 0.5%     |
| Europe        | 6.1%       | 19.4%    | 0.3%     |
| North America | 34.4%      | 48.1%    | 0%       |
| South America | 3.3%       | 9.1%     | 0%       |

Lenz O et al. AASLD 2013. Abstract 1101



http://www.hcvguidelines.org/full-report-view last update April 24





### EASL Recommendations on Treatment of Hepatitis C

2014

**APRIL 2014** 

■ When treatment with Simeprevir is considered:

For genotype 1a, baseline resistance testing for Q80K should be performed and alternative treatments considered if this mutation is present.

 This combination is not recommended in patients infected with subtype 1a who have a detectable Q80K substitution in the NS3 protease sequence at baseline, as assessed by population sequencing (direct sequence analysis) (Recommendation A2)

# **Daclatasvir**+RBV+pegIFN *alfa-2a vs. alfa-2b* in treatment-naive and IFN-experienced HCV G1 infected patients.

- N=36 patients (18 treatment naive; 18 IFN-experienced):
   9 experienced virological failure
- Patient's profile at failure:

Treatment naive ( n=1):

- Baseline polymorphism: Y93H
- Non-CC IL28

IFN-experienced (n=8):

- 7 non-CC IL28B

- All baseline polymorphisms :L28M(1),L31V/M(2), R30Q(1), Q54H(5), Q62R(1), A92T(1).

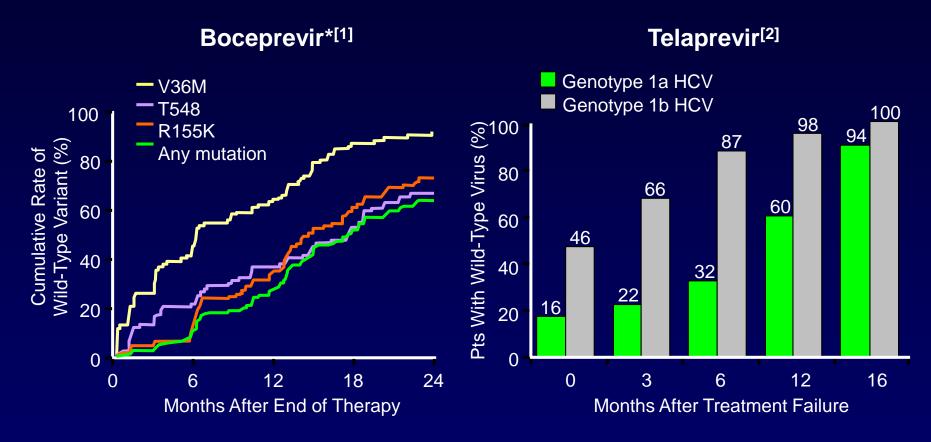
■ The most common emergent variants associated with DCV resistance were: L31V/M and Y93H.

# Impact of baseline polymorphism know to confer loss of susceptibility to Daclatasvir among patients receiving Daclatasvir plus Sofosbuvir.

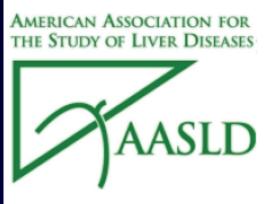
Prevalence of baseline polymorphisms:

8% of G1 untreated patients 8% of G1 treated patients 61% of G2 28% of G3

All patients but one with preexisting daclatasvir resistance variants had a sustained virologic response


| Number of<br>Patients | HCV Genotype | Polymorphism(s) at<br>NS5A Amino Acid Positions | Virologic Outcome                            |
|-----------------------|--------------|-------------------------------------------------|----------------------------------------------|
| 1                     | 1a           | 30H/R                                           | SVR <sub>48</sub>                            |
| 1                     | 1a           | M28T                                            | SVR <sub>24</sub>                            |
| 1                     | 1a           | Q30H-Y93H                                       | SVR <sub>12</sub>                            |
| 1                     | 1a           | Q30E, Y93N                                      | SVR <sub>48</sub>                            |
| 1                     | 1a           | Y93C                                            | SVR <sub>36</sub>                            |
| 1                     | 1a           | Q30H                                            | SVR <sub>36</sub>                            |
| 1                     | 1a           | L31M                                            | SVR <sub>4</sub> , then lost to<br>follow-up |
| 1                     | 1a           | Q30H-L31M                                       | SVR <sub>36</sub>                            |
| 1                     | 1a           | Y93N                                            | SVR <sub>48</sub>                            |
| 1                     | <b>1</b> b   | R30Q-L31M                                       | SVR <sub>48</sub>                            |
| 2                     | <b>1</b> b   | L31M                                            | SVR <sub>12</sub> , SVR <sub>36</sub>        |
| 1                     | <b>1</b> b   | Y93H                                            | SVR <sub>36</sub>                            |
| 13                    | 2            | L31M                                            | SVR <sub>48</sub> (all)                      |
| 1                     | 2            | L31M-P58S                                       | SVR <sub>24</sub>                            |
| 1                     | 3            | A30K                                            | Relapse                                      |
| 1                     | 3            | A30K, L31M                                      | SVR <sub>48</sub>                            |
| 3                     | 3            | Ү93Н                                            | SVR <sub>48</sub> (all)                      |

Lack of impact of baseline resistance-associated variants (RAVs) on treatment outcome in the **AVIATOR** study with **ABT-450/r**, **ABT-333**, & **ABT-267**+/- ribavirin


| NS3 RAVs              | N (%)                    | NS5A RAVs                                                                                                                   | N (%)                                                                                                                                  | NS5B RAVs                                                                                                          | N (%)                                                                                                                                 |
|-----------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1a- V36A/L/M<br>D168A | 7/230 (3)<br>1/230 (0,4) | 1a-M28T/V<br>1a-Q30H/R<br>1a-L31M/V<br>1a-H58C/P/Q/R/Y<br>1a-Y93C/H/N<br>1b-R30Q<br>1b-L31I/M<br>1b-P58A/L/R/S/T<br>1b-Y93H | 15/235 (6,4)<br>8/235 (3,4)<br>2/235 (0,8)<br>11/235 (4,7)<br>6/235 (2,5)<br>11/130 (8,5)<br>8/130 (6,1)<br>9/130 (6,9)<br>7/130 (5,4) | 1a-C316Y<br>1a-M414T<br>1a-A553G<br>1a-S556G/N/R<br>1b-C316H/K/N/W<br>1b-S368A<br>1b-M414L<br>1b-C445F<br>1b-S556G | 2/258 (0,8)<br>1/258 (0,4)<br>1/258 (0,4)<br>10/258 (3,9)<br>25/125 (0,2)<br>1/125 (0,8)<br>1/125 (0,8)<br>2/125 (1,6)<br>20/125 (16) |

SVR12 rate of 92,8% in subjects with ≥ 1 RAV was comparable to that subjects with no RAVs, 93,2%)

## Loss of Detectable Resistance in Patients Stopping BOC or TVR + PegIFN/RBV



- \*Data from phase II studies.
- 1. Vierling JM, et al. EASL 2010. Abstract 2016.
- 2. Sullivan J, et al. EASL 2011. Abstract 8.



#### http://www.hcvguidelines.org/full-report-view last update April 24



Patients in whom previous treatment with PEG/RBV plus either telaprevir or boceprevir\*\*\* has failed †† †††

1 SOF x 12 weeks +

PEG/RBV x 12-24 weeks

SOF + RBV x 24 weeks‡

PEG/RBV ± telaprevir or boceprevir or SMV

Monotherapy with PEG, RBV, or a DAA

SOF + PEG/RBV x 24

weeks‡‡

Do not treat decompensated cirrhosis with

PEG or SMV

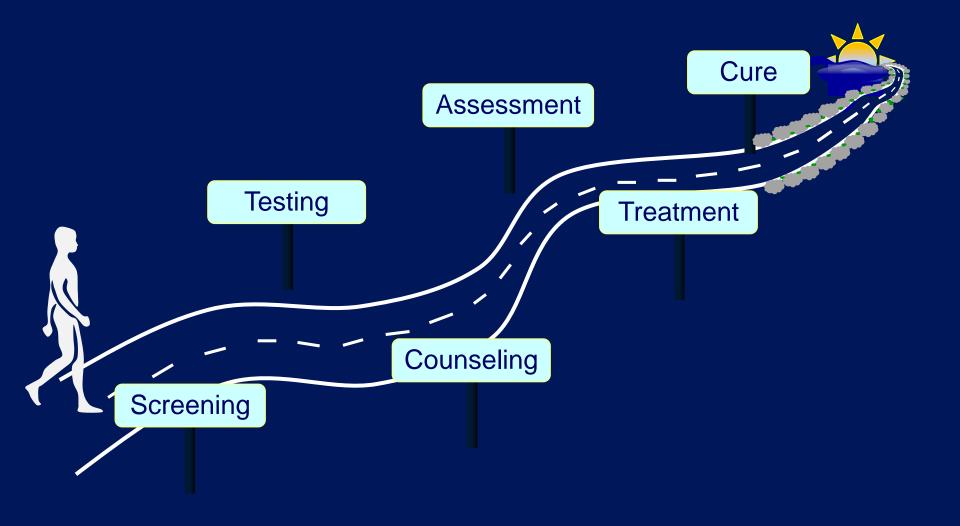
\*\*\* Non-responder is defined as partial or null response to treatment with PEG/RBV plus telaprevir or boceprevir.

Relapse to prior therapy should be treated the same as treatment naive (see Initial Treatment section)

†† A recommendation for simeprevir use for patients with previous telaprevir or boceprevir exposure not provided due to potential risk of preexistant resistance to protease inhibitor treatment.

## Role of HCV resistance in DAA-based therapies

- Treatment naive patients and retreatment after PEG/RBV treatment failure.
- Protease inhibitors: Baseline resistance testing for Q80K among genotypes 1a when SMV is considered.


The impact of Q80K can be minimized with DAAs combinations (i.e. SOF).

- Sofosbuvir: There is no pre-existing RAVs, therefore, resistance testing is not recommended.
- NS5A inhibitors: There is a link between baseline RAVs and treatment failure. However, combined with another potent DAA like SOF the rates of failure is very low and is not associated with pre-existing RAVs.
- 2. Retreatment after failure of conventional TVR/BOC triple therapy.
- Protease inhibitors: Cross-resistance and potential risk of pre-existing variants.
   Treatment with PIs is not recommended
- Sofosbuvir&NS5A inhibitors: No cross-resistance. Resistance testing is not recommended.

## New Era for the treatmet of HCV infection:

"Test all, Treat hard and short, and Cure most"

## HCV Screening Is the First Step on the Road to a Cure



#### http://www.hcvguidelines.org/full-report-view

last update April 24

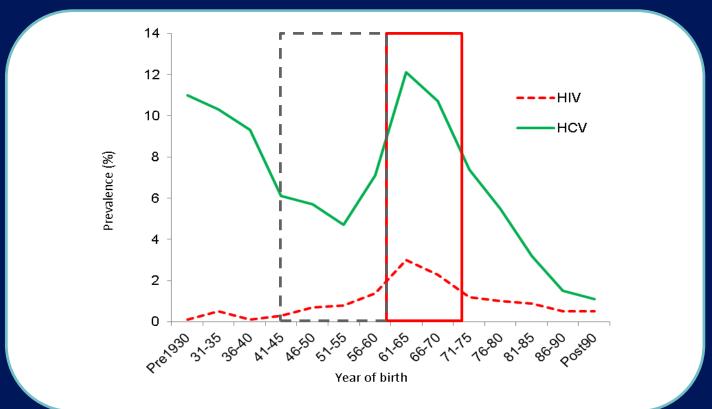


HCV testing is recommended at least once for persons born between 1945 and 1965.

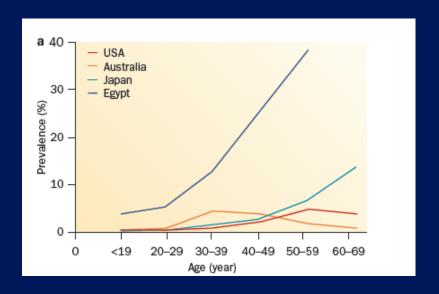
Rating: Class I, Level B

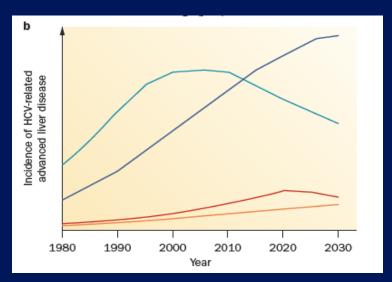
Other persons should be screened for risk factors for HCV infection, and one-time testing should be performed for all persons withbehaviors, exposures, and conditions associated with an increased risk of HCV infection.

45%-


- Barriers to testing include inadequate health insurance coverage and limited access to regular health.
- 41,7 % of primary care physicians reported being unfamiliar with the guidelines on HCV testing from the American Association for the study of Liver Disease (AASLD).

## Rate of HCV infection in Birth Cohort Testing (1945-1965)


| Study                           | Target population       | City/Country   | Period                       | HCV-infection (%) |
|---------------------------------|-------------------------|----------------|------------------------------|-------------------|
| Backus et al.,<br>AASLD 2013    | US Veterans             | USA            | 2012                         | 9,9 %             |
| Yartel et al.,<br>AASLD 2013    | Primary Care Patients   | USA            | 2005-2010<br>(retrospective) | 6,4%              |
| Galbraith et al.,<br>AASLD 2013 | Emergency<br>Department | Alabama/USA    | 2012                         | 10,4%             |
| Geboy et al.,<br>CROI 2014      | Primary Care Patients   | Washington/USA | 2012-2013                    | 9%                |


# Trends in the seroprevalence of HBV, HCV, and HIV infection at a reference medical center in Spain over the last five years.

■ A total of 92,143 anti-HCV results were generated during the last 5 years from subjects attending our medical care area with a global prevalence of anti-HCV+ of 8,6%.



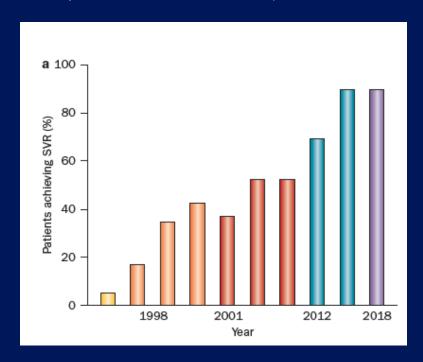
### Age-specific prevalence of HCV infection - incidence of HCV-related advanced liver disease

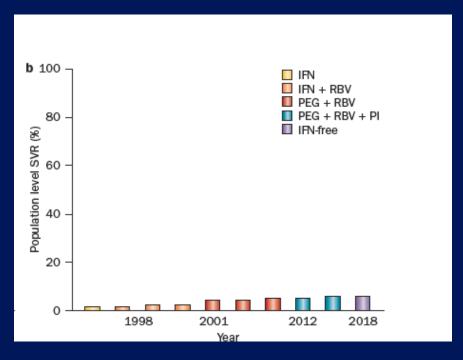




Hajarizadeh et al, Nature Rev 2013

■ In Europe patients now chronically infected with HCV will represent a heavy disease burden in the coming years:


The disease burden of chronic hepatitis C virus (HCV) infection in Switzerland.


HCV progression and mortality was modeled to 2030:

- Cases of cirrhosis increase by 60%.
- Cases of decompensated cirrhosis by 75%.
- Cases of HCC by 110%.
- Cases of liver-related deaths by 95%.

# Low global impact of improving HCV treatment efficacy without expanding HCV testing and treatment initiation

- Most HCV-infected individuals are not patients. Only a small fraction of the estimated 150 million individuals with chronic HCV know they are infected; far fewer ever start treatment.
- USA: 663, 000 of around 4-5 million individuals with chronic HCV were treated (2002-2007). Europe: 308, 000 individuals (~ 16% of the HCV-infected patients) received HCV treatment (2006).





Hajarizadeh et al, Nature Rev 2013