

Curso Formativo de Actualización en Hepatitis Virales

Manejo del paciente con SARS-CoV2 y coinfección por virus hepatotropos

Álvaro Mena de Cea Unidad de Enfermedades Infecciosas, CHUAC Grupo de Virología Clínica, INIBIC-CHUAC

alvaro.mena.de.cea@sergas.es

CONFLICTO DE INTERESES

- En los últimos cinco años he recibido honorarios como ponente y/o recibido ayudas para la investigación de:
 - Abbvie
 - Gilead
 - Janssen
 - MSD
 - Viiv
- No tengo ningún conflicto de intereses en esta exposición.
- Recibo honorarios por esta actividad.

- COVID-19 y enfermedad hepática
- **COVID-19 y VHB**:
 - Incidencia de COVID-19 moderado, grave.
 - Riesgo de reactivación del VHB.
- COVID-19 y VHC.
- COVID-19 y cribado de VHB y VHC.
- Vacuna frente a SARS-CoV-2 y enfermedad hepática.

COVID-19 y enfermedad hepática

- El 20% de los pacientes que ingresan por COVID-19 tienen elevación de transaminasas, de causa no aclarada. (Bertoni, Hepatology 2020;72(5):1864)
- Elevación de transaminasas → marcador de progresión a COVID-19 grave. (Cai Q, J Hepatol. 2020;73(3):566)
- Cirrosis hepática→ marcador pronóstico de mortalidad en COVID-19. (Middleton P, BMJ Open Gastroenterol. 2021;8)
- Limitaciones para algunos fármacos:
 - Remdesivir aumento frecuente de transaminasas. Limitaciones en transaminasas x5.
 - No hay limitaciones en principio para sotrovimab o casirivimab/imdevimab.

- COVID-19 y enfermedad hepática
- **COVID-19** y VHB:
 - Incidencia de COVID-19 moderado, grave.
 - Riesgo de reactivación del VHB.
- COVID-19 y VHC.
- COVID-19 y cribado de VHB y VHC.
- Vacuna frente a SARS-CoV-2 y enfermedad hepática.

Clinical Effect of Hepatitis B Virus on COVID-19 Infected Patients: A Nationwide Population-Based Study Using the Health Insurance Review & Assessment Service Database

Jung Wan Choe ," Young Kul Jung ," Hyung Joon Yim , and Gi Hyeon Seo 2

¹Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Korea ²Health Insurance Review and Assessment Service, Wonju, Korea

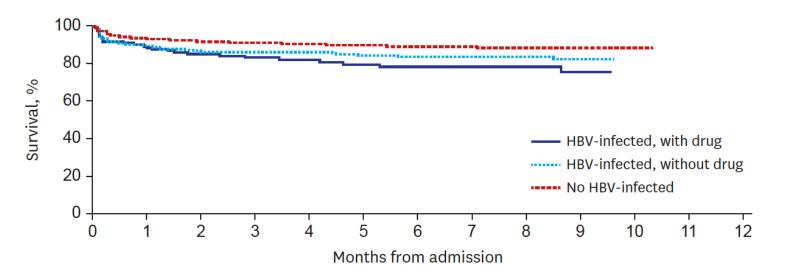


Table 3. Relative risk of overall clinical outcomes of COVID-19 according to HBV infection and antiviral agent treatment

Clinical outcomes	No. of patients	No. of events	Events rate	Crude OR (95% CI)	P value	Adjusted OR ^a (95% CI)	P value
All-cause mortality	patients	events	Tale	(93% CI)		(93% CI)	
Non HBV-infected	18,485	1,524	8.2	1		1	
HBV-infected, with antiviral agents	537	70	13.0	1 67 (1 00 0 14)	< 0.001	0.01 (0.69.1.01)	0 545
				1.67 (1.28-2.14)		0.91 (0.68-1.21)	0.545
HBV-infected, without antiviral agents	138	21	15.2	2.00 (1.22-3.12)	0.004	0.95 (0.54–1.61)	0.867
Composite (mortality, ICU admission, liver failure, MV/ECMO, AKI/CRRT)							
Non HBV-infected	18,485	2,552	13.8	1		1	
HBV-infected, with antiviral agents	537	116	21.6	1.72 (1.39-2.11)	< 0.001	0.97 (0.76-1.23)	0.823
HBV-infected, without antiviral agents	138	33	23.9	1.83 (1.22-2.67)	0.002	0.92 (0.58-1.44)	0.720
ICU admission							
Non HBV-infected	18,485	1,398	7.6	1		1	
HBV-infected, with antiviral agents	537	71	13.2	1.86 (1.43-2.39)	< 0.001	1.22 (0.92-1.60)	0.160
HBV-infected, without antiviral agents	138	14	10.1	1.38 (0.76-2.32)	0.256	0.96 (0.50-1.70)	0.896
Long in-hospital stay length (≥ 30 days)							
Non HBV-infected	18,485	3,508	19.0	1		1	
HBV-infected, with antiviral agents	537	99	18.4	0.96 (0.77-1.20)	0.752	1.03 (0.82-1.29)	0.791
HBV-infected, without antiviral agents	138	24	17.4	0.90 (0.56-1.37)	0.636	1.08 (0.67-1.69)	0.730

PLOS ONE

RESEARCH ARTICLE

Association between chronic hepatitis B infection and COVID-19 outcomes: A Korean nationwide cohort study

Seong Hee Kang ^{1,2}, Dong-Hyuk Cho³, Jimi Choi⁴, Soon Koo Baik^{1,2}, Jun Gyo Gwon⁵, Moon Young Kim ^{1,2}

Table 2. Association between history of CHB and risk of COVID-19.

	Total	N	(%)	Unadjusted OR	95% CI	P value	Adjusted OR	95% CI	P value
History of CHB									
For COVID-19*				0.58	0.51-0.67	< .001	0.65	0.57-0.74	< .001
Matched controls	46,231	2,482	(5.4)						
Cases	7,723	267	(3.5)						
For death**				1.51	0.84-2.74	0.172	1.29	0.63-2.63	0.483
Survival	7,486	255	(3.4)						
Death	237	12	(5.1)						
For severity**				1.66	1.10-2.52	0.016	1.34	0.84-2.14	0.218
Mild	7,243	241	(3.3)						
Severe	480	26	(5.4)						

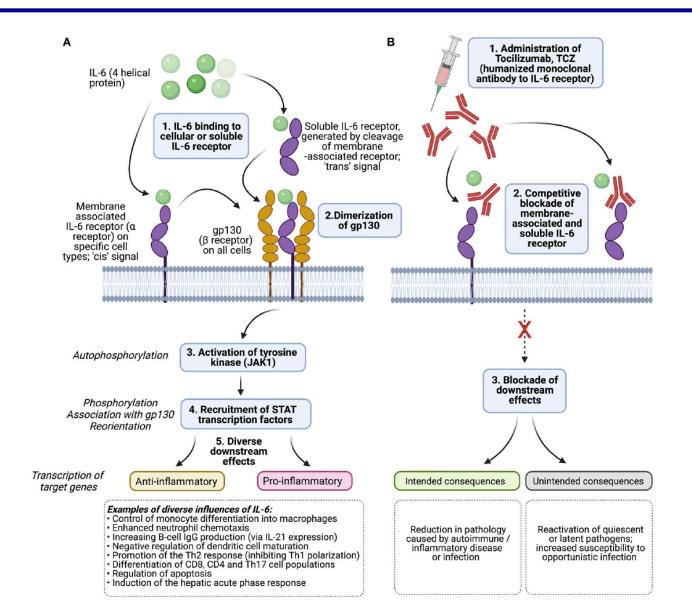
PLOS ONE

RESEARCH ARTICLE

Association between chronic hepatitis B infection and COVID-19 outcomes: A Korean nationwide cohort study

Seong Hee Kang_{1,2,6}, Dong-Hyuk Cho^{3,6}, Jimi Choi⁴, Soon Koo Baik^{1,2}, Jun Gyo Gwon⁵*, Moon Young Kimp 1,2*

Table 3. Association between use of CHB medication and risk of COVID-19.


Table 3. Association	n betweei	1 use of CHB		on and risk o					iEPIC	05?
Case Patients Matched Controls (n = 7,723) (n = 46,231)			Odds ratio for COVID-19							
	N	(%)	N	(%)	Unadjusted OR	95% CI	P value	Adjusted OR	95% CI	P value
CHB medication	50	(0.6)	585	(1.3)	0.52	0.38-0.69	< .001	0.49	0.37-0.66	< .001
Adefovir	4	(0.1)	17	(0.04)	1.66	0.55-5.06	0.370	1.78	0.56-5.68	0.328
Entecavir	18	(0.2)	252	(0.5)	0.45	0.28-0.74	0.001	0.44	0.27-0.71	0.001
Telbivudine	1	(0.01)	5	(0.01)	-	-	-	-	-	-
Tenofovir	29	(0.4)	361	(0.8)	0.52	0.35-0.76	0.001	0.50	0.34-0.74	< 0.001

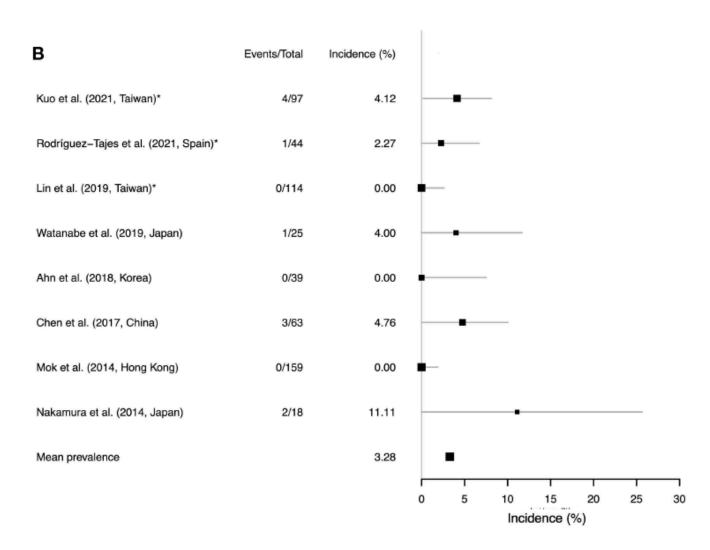
- COVID-19 y enfermedad hepática
- **COVID-19** y VHB:
 - Incidencia de COVID-19 moderado, grave.
 - Riesgo de reactivación del VHB.
- COVID-19 y VHC.
- COVID-19 y cribado de VHB y VHC.
- Vacuna frente a SARS-CoV-2 y enfermedad hepática.

COVID-19 y reactivación del VHB. Corticoides

- Los corticoides son el inmunosupresor más frecuente.
- Pacientes con infec VHB pasada (AcHBc+) tienen riesgo moderado de reactivación (1-10%)
 con un riesgo anual de 1,8%. (Wong GL, J Hepatol. 2020;72(1):57)
- Baja duración de corticoides en COVID-19.
- Nulo riesgo de reactivación del VHB con corticoides en COVID-19 en pacientes en tratamiento antiviral, pocos datos en pacientes sin tratamiento frente al VHB. (Rodriguez-Tajes S, J Viral Hepat. 2021;28(1):89).

COVID-19 y reactivación del VHB. Tocilizumab

COVID-19 y reactivación del VHB. Tocilizumab


Risk of Reactivation of Hepatitis B Virus (HBV) and Tuberculosis (TB) and Complications of Hepatitis C Virus (HCV) Following Tocilizumab Therapy: A Systematic Review to Inform Risk Assessment in the COVID-19 Era

Cori Campbell¹, Monique I. Andersson^{2,3}, M. Azim Ansari^{1,4}, Olivia Moswela⁵, Siraj A. Misbah⁶, Paul Klenerman^{1,2} and Philippa C. Matthews^{1,2*}

Alto riesgo de reactivación (>10%) en pacientes con AgHBs+ sin tratamiento antiviral con Tocilizumab en AR.

AcHBc+ con AgHBs-, riesgo de reactivación con Tocilizumab:

- 2,6% en los que no realizan profliaxis
- 0% en los que realizan profilaxis

Campbell C, Front. Med. 8:706482

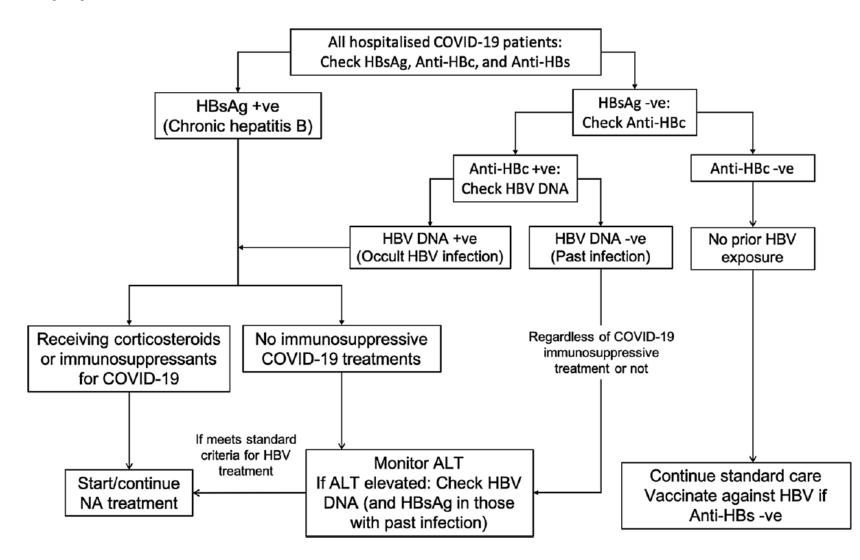
COVID-19 y reactivación del VHB

Hepatology International https://doi.org/10.1007/s12072-022-10306-x

REVIEW ARTICLE

Management of hepatitis B virus reactivation due to treatment of COVID-19

Terry Cheuk-Fung Yip^{1,2,3} · Madeleine Gill^{4,5} · Grace Lai-Hung Wong^{1,2,3} · Ken Liu^{4,5,6}


- Pocas reactivaciones del VHB en la literatura aunque hay pocos datos y heterogéneos.
- Desde la experiencia previa, existe riesgo de reactivación con distintas alternativas terapéuticas, especialmente tocilizumab → monitorización estrecha.
- No hay datos con Sarilumab y Tofacitinib. Con Baricitinib 1,9% de reactivaciones VHB en AR. (Harigai M, RMD Open. 2020;6(1)

REVIEW ARTICLE

Management of hepatitis B virus reactivation due to treatment of COVID-19

Terry Cheuk-Fung Yip^{1,2,3} · Madeleine Gill^{4,5} · Grace Lai-Hung Wong^{1,2,3} · Ken Liu^{4,5,6}

- COVID-19 y enfermedad hepática
- **COVID-19** y VHB:
 - Incidencia de COVID-19 moderado, grave.
 - Riesgo de reactivación del VHB.
- COVID-19 y VHC.
- COVID-19 y cribado de VHB y VHC.
- Vacuna frente a SARS-CoV-2 y enfermedad hepática.

COVID-19 y VHC

- La pandemia ha tenido un impacto negativo en los programas de eliminación del VHC.
- Aumento claro en el consumo de opioides y otras drogas. En 1º ola en USA, marcado aumento del consumo de fentanilo (OR 1,67), metanfetamina (OR 1,23), heroína (OR 1,33) y cocaína (OR 1,19). (Wainwright JJ, JAMA. Published September 18, 2020)
- La pandemia ha afectado especialmente a determinados colectivos vulnerables, como las personas que usan drogas inyectadas, los residentes de albergues, sintecho o las personas en prisión. Presentan mayor riesgo de infección y mayor riesgo de COVID-19 grave y mortalidad.

- COVID-19 y enfermedad hepática
- **COVID-19 y VHB**:
 - Incidencia de COVID-19 moderado, grave.
 - Riesgo de reactivación del VHB.
- COVID-19 y VHC.
- COVID-19 y cribado de VHB y VHC.
- Vacuna frente a SARS-CoV-2 y enfermedad hepática.

COVID-19 y cribado de VHC y VHB

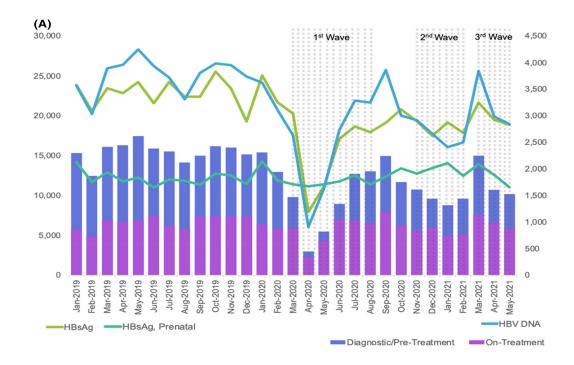
Original article

Seroprevalence of hepatitis B and C viruses in moderate and severe COVID-19 inpatients: A cross-sectional study at a referral center in Mexico

JC Jiménez-Mendoza^{a,1}, FE Rivera-López^{b,1}, MF González-Lara^c, RD Valdez-Echeverría^d, GE Castro-Narro^b, A Tore^b, LF Uscanga-Domínguez^b, C Moctezuma-Velázquez^{b,e,*}

Table 2Proportion of patients with protective levels of anti-HBsAg by age group

Age group	n	Anti-HBsAg ≥10 mIU/ml, n (%)
18-29	155	79 (51)
30-39	317	75 (24)
40-49	592	75 (13)
50-59	863	85 (10)
60-69	808	60 (7)
70-79	488	18 (4)
80-89	198	7 (4)
≥90	22	0 (0)


Group A	Group B	Group C	Group D
Negative	Anti-HCV positive	HBsAg positive	Anti-HBcAg positive-HBsAg
serologies	patients	patients	negative patients
(n=3476)	(n=24)	(n=4)	(n=68)
	(0.67%)	(0.11%)	(1.90%)

COVID-19 y cribado de VHC y VHB

> J Viral Hepat. 2022 Mar;29(3):205-208. doi: 10.1111/jvh.13637. Epub 2021 Dec 5.

The impact of the first, second and third waves of covid-19 on hepatitis B and C testing in Ontario, Canada

Erin Mandel ¹, Adriana Peci ², Kirby Cronin ², Camelia I Capraru ³, Hemant Shah ^{1 3}, Harry L A Janssen ^{1 3}, Vanessa Tran ^{2 4}, Mia J Biondi ^{3 5}, Jordan J Feld ^{1 3 6}

COVID-19 y cribado de VHC y VHB

> Lancet Gastroenterol Hepatol. 2021 Aug;6(8):608-609. doi: 10.1016/S2468-1253(21)00217-X.

Pooling samples for hepatitis C RNA detection

Antonio Aguilera ¹, Sara Pereira ², Ana Fuentes ³, Adolfo de Salazar ³, Rocío Trastoy ², Daniel Navarro ², Camila A Picchio ⁴, Jeffrey V Lazarus ⁴, Federico García ⁵

Affiliations + expand

PMID: 34246354 PMCID: PMC8266286 DOI: 10.1016/S2468-1253(21)00217-X

Table 1. Pooling of a positive sample (U=unknown) by two commercially available HCV-RNA detection tests

CAP CTM v2 HCV **Cobas 6800** Samples Pool IU/ml IU/ml Log10 Log10 U 610311 5.78 115000 5.06 U+9 negative 10 51389 4.71 14700 4.16 U+99 negative 100 4642 3.67 1730 3.23 U+999 negative 2.78 2.36 1000 604 231 U+9999negative 10000 94 1.97 43 1.63 U+99999 negative 100000 <15 <1.18 <15 <1.18 U+999999 negative 1000000 **TND TND**

0,30€/muestra

- COVID-19 y enfermedad hepática
- **COVID-19 y VHB**:
 - Incidencia de COVID-19 moderado, grave.
 - Riesgo de reactivación del VHB.
- COVID-19 y VHC.
- COVID-19 y cribado de VHB y VHC.
- Vacuna frente a SARS-CoV-2 y enfermedad hepática.

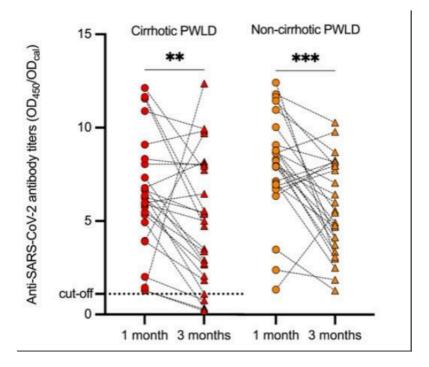
Vacuna frente SARS-CoV-2 y enfermedad hepática

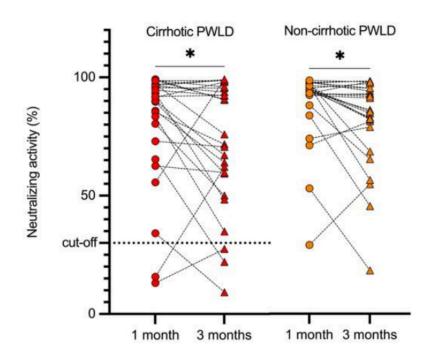
Brief Report

Antibody Responses after SARS-CoV-2 Vaccination in Patients with Liver Diseases

Athanasios-Dimitrios Bakasis ¹, Kleopatra Bitzogli ¹, Dimitrios Mouziouras ¹, Abraham Pouliakis ², Maria Roumpoutsou ¹, Andreas V. Goules ¹,* and Theodoros Androutsakos ¹,* b

	Cirrhotic PWLD (N = 38)	Non-Cirrhotic PWLD (N = 49)	Controls (N = 40)	<i>p</i> -Value
Demographic characteristics				
Age (years), median (range)	67 (27–86)	65 (35–81)	71.5 (27–88)	0.300
Female gender, n (%)	16(42.1)	28 (57.1)	18 (45)	0.320
Comorbidities				
Diabetes mellitus, n (%)	16 (42.1)	11 (22.4)	9 (22.5)	0.080
Pulmonary disease, n (%)	4 (10.5)	2 (4.1)	1 (2.5)	0.256
Cardiovascular disease, n (%)	15 (39.5)	17 (34.7)	13 (32.5)	0.805
Systemic autoimmune disorders, n (%)	8 (21.0)	19 (38.7)	0 (0)	< 0.001
Type of vaccine				
Pfizer-BioNTech BNT162b2, n (%)	34(89.5)	47(95.9)	36 (90)	0.452
Moderna mRNA-1273, n (%)	4 (10.5)	2 (4.1)	4 (10)	0.452



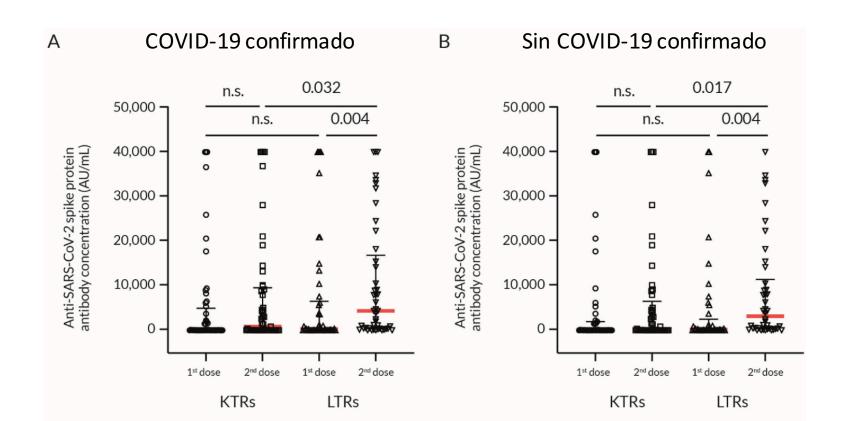


Brief Report

Antibody Responses after SARS-CoV-2 Vaccination in Patients with Liver Diseases

Athanasios-Dimitrios Bakasis ¹, Kleopatra Bitzogli ¹, Dimitrios Mouziouras ¹, Abraham Pouliakis ², Maria Roumpoutsou ¹, Andreas V. Goules ¹,* and Theodoros Androutsakos ¹,*

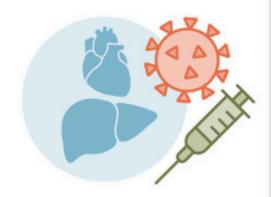
- Buena tolerancia de la vacuna en todos los grupos
- Eficaz en personas con enfermedad hepática

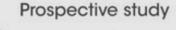

Vacuna frente SARS-CoV-2 y Tx hepático

Article

Unexpectedly High Efficacy of SARS-CoV-2 BNT162b2 Vaccine in Liver versus Kidney Transplant Recipients—Is It Related to Immunosuppression Only?

Paulina Nazaruk ¹, Marta Monticolo ¹, Anna Maria Jędrzejczak ¹, Natalia Krata ¹, Barbara Moszczuk ², Joanna Sańko-Resmer ³, Tomasz Pilecki ¹, Arkadiusz Urbanowicz ¹, Michał Florczak ¹, Leszek Pączek ^{1,4}, Bartosz Foroncewicz ^{1,†} and Krzysztof Mucha ^{1,4,*,†}


¿74%? Tras dos dosis



Vacuna frente SARS-CoV-2 y Tx hepático

Cellular and humoral immune response after mRNA-1273 SARS-CoV-2 vaccine in liver and heart transplant recipients

What is the cellular immune response to the mRNA-1273 (Moderna) SARS-CoV-2 vaccine in heart and liver Tx recipients?

Tx recipients

2 doses of mRNA-1273 SARS-CoV-2 vaccine

Antibody and T cell analysis:

- · Prior to vaccination
- 4 weeks after each dose

Immunity to SARS-CoV-2 developed in:

64% of recipients based on IgG

79% of recipients based on T cells

90% of recipients based on antibodies and/or T cells 87% heart, 93% liver

Hypogammaglobulinemia and recent transplantation as risk-factors for non-response

Vacuna frente SARS-CoV-2 y Tx hepático

Neutralization against Omicron variant in transplant recipients after three-doses of mRNA vaccine

Deepali Kumar X, Queenie Hu, Reuben Samson, Victor H. Ferreira, Victoria G. Hall ... See all authors 🗸

First published: 10 March 2022 | https://doi-org.mergullador.sergas.es/10.1111/ajt.17020

Figure 1B: Fold reduction in ID50 for Delta and Omicron compared to Wild-type virus

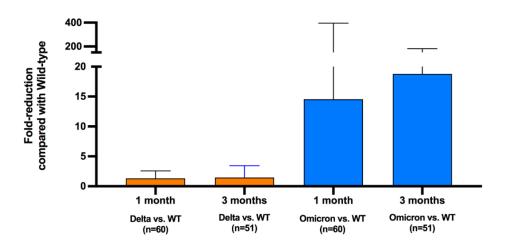
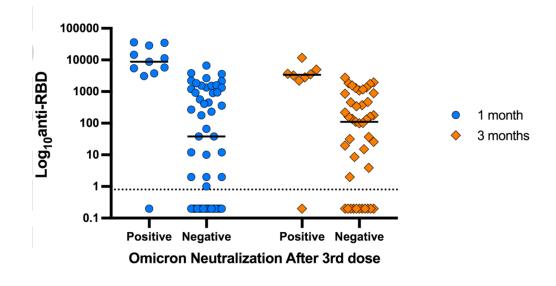



Figure 2: Anti-RBD titers after 3rd dose of mRNA-1273 in patients with and without Omicron variant neutralization

En resumen...

- La presencia de enfermedad hepática condiciona el pronóstico de COVID-19.
- La presencia de VHB o VHC per se no empeora el pronóstico de COVID-19.
- Potencial riesgo de reactivación del VHB con algunos tratamientos frente a COVID-19, especialmente tocilizumab.
- El ingreso por COVID-19, el cribado y la vacunación frente a SARS-CoV-2 son ocasiones para el diagnóstico de los virus hepatotropos.
- La reutilización de los equipos diagnósticos por técnica de pooling puede ser de utilidad en los programas de cribado de VHC.
- La vacunación frente a SARS-CoV-2 se ha mostrado eficaz y segura en enfermedad hepática avanzada y en el contexto del Tx hepático, aunque en este caso se necesitan más datos a largo plazo.

Curso Formativo de Actualización en Hepatitis Virales

ÁREA SANITARIA

DA CORUÑA E CEE

