6ª EDICIÓN DE SESIONES CLÍNICAS INTERHOSPITALARIAS DE HEPATITIS 2021

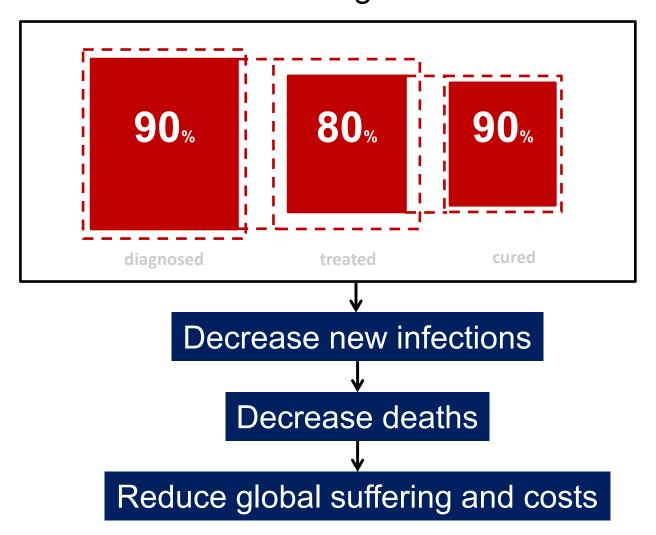
Tratamiento del VHC en pacientes ancianos

29 de septiembre de 2021

Álvaro Mena de Cea
Unidad de Enf Infecciosas, XXIAC
Grupo de Virología Clínica, INIBIC-XXIAC
alvaro.mena.de.cea@sergas.es

Conflicto de intereses

- En los últimos cinco años he recibido honorarios como ponente y/o recibido ayudas para la investigación de:
 - Abbvie
 - Gilead
 - Janssen
 - MSD
 - Viiv
- Recibo honorarios por esta comunicación.


Índice

- Situación epidemiológica. Cribado.
- Barreras para el tratamiento antes de los AAD.
- Eficacia y seguridad de los AAD en ancianos.
- Progresión de la enfermedad hepática.

Índice

- Situación epidemiológica. Cribado.
- Barreras para el tratamiento antes de los AAD.
- Eficacia y seguridad de los AAD en ancianos.
- Progresión de la enfermedad hepática.

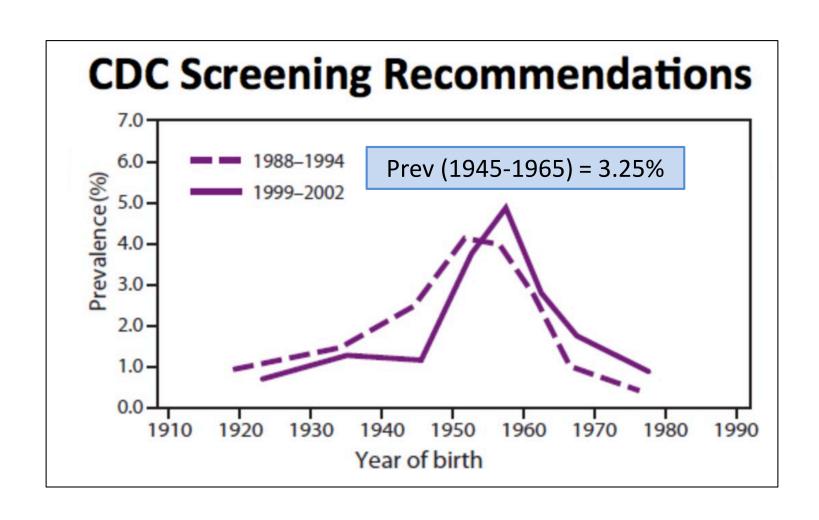
WHO global health sector HCV strategy: Global targets for 2030

¿Cómo lograremos eliminar el VHC?

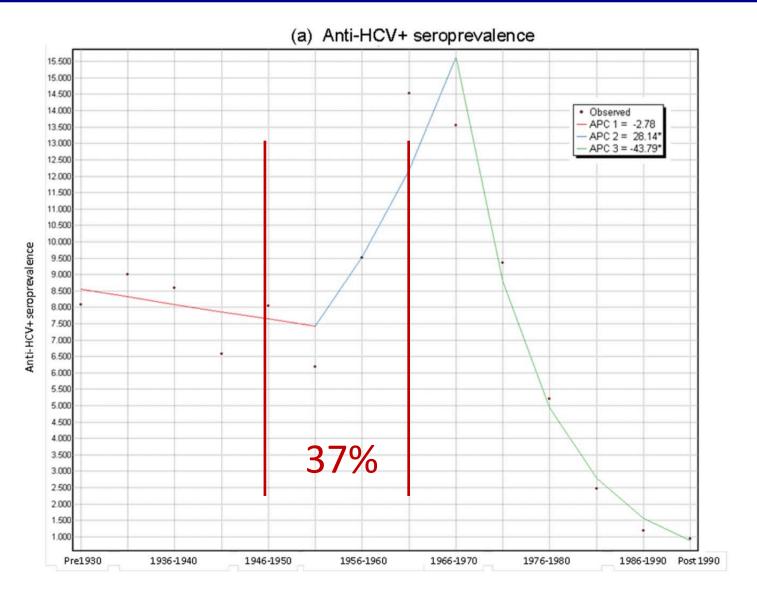
- Tratamiento a todos los pacientes, sin restricciones.
- Optimizar los procesos de continuidad asistencial para identificar y tratar a los pacientes que no están en las consultas: Test & Treat.
- Promover políticas activas de cribado.
- Prevención de la infección y reinfección.
- Tratamientos simples y con tasas de curación >95% en todos los perfiles de pacientes.

¿Cribado en población general?

CDC Screening Recommendations



Recommendations for the Identification of Chronic Hepatitis C Virus Infection Among Persons Born During 1945–1965



- All adults born during 1945–1965 should have 1-time testing without prior ascertainment of HCV risk
- All persons identified with HCV should receive:
 - Alcohol screening
 - Intervention as clinically indicated
 - Referral to appropriate care
- Endorsed by USFPTF and CMS

¿Cribado en población general? USA

¿Cribado en población general? España

The European Journal of Public Health, 1–6 © The Author(s) 2021. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved. doi:10.1093/eurpub/ckab069

Prevalence and undiagnosed fraction of hepatitis C infection in 2018 in Spain: results from a national population-based survey

Alicia Estirado Gómez^{1,*}, Soledad Justo Gil^{2,*}, Aurora Limia², Ana Avellón³, Araceli Arce Arnáez¹, Raquel González-Rubio⁴, Asunción Diaz^{4,5,*}, Julia del Amo^{4,*} and the Working group of the HCV prevalence study in Spain in 2017–2018[†]

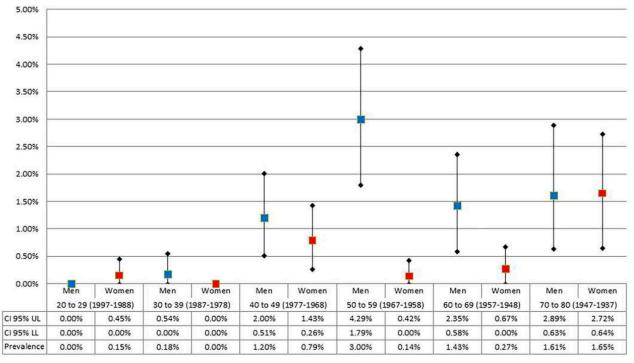


Figure 1 HCV antibody prevalence by age group (20-80 years) and sex. Second Seroprevalence Study in Spain: Hepatitis C 2017-2018

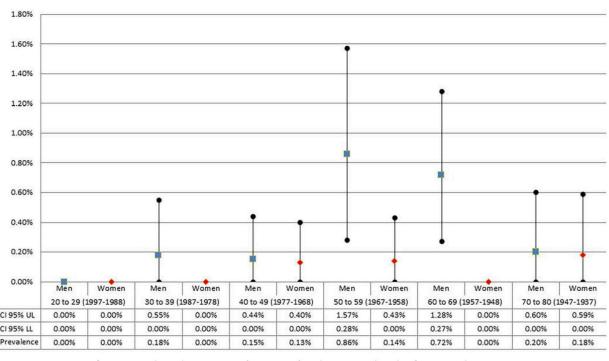
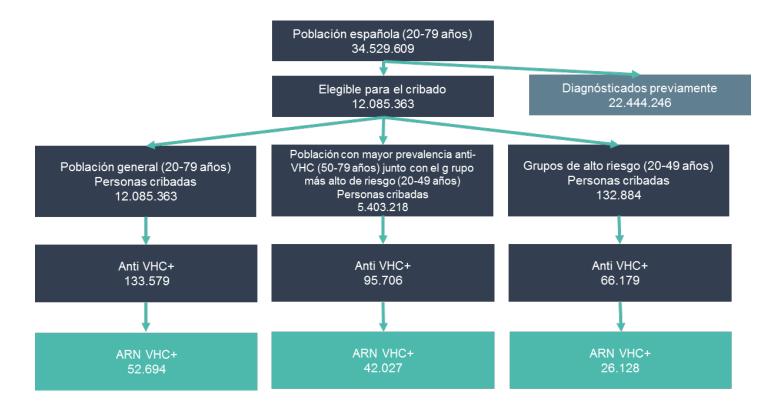



Figure 2 Active HCV infection prevalence by age group (20–80 years) and sex. Second study of Seroprevalence in Spain: Hepatitis C 2017–2018

El cribado y tratamiento de la población general entre 20 y 79 años es coste-efectivo¹

Los resultados sugieren que **cribar a la población en España para VHC es coste-efectivo** respecto al cribado de grupos de alto riesgo o de poblaciones con la mayor prevalencia de anti-VHC + grupos de alto riesgo^{1,2}

^{1.} Buti M, et al. El cribado y tratamiento del virus de la hepatitis C en población general española entre 20 y 79 años de edad es coste-efectivo. P-132, 43 Congreso Anual AEEH (2018). 2. Gely Vila C. Estrategias de cribado para la eliminación de la Hepatitis C. Enferm Endosc Dig. 2018;5(2):1-3. Disponible en: https://aeeed.com/numero-actual/estrategias-de-cribado-para-la-eliminacion-de-la-hepatitis-c/. Último acceso: abril 2019.

El cribado y tratamiento de la población general entre 20 y 79 años es coste-efectivo¹

Los resultados sugieren que **cribar a la población en España para VHC es coste-efectivo** respecto al cribado de grupos de alto riesgo o de poblaciones con la mayor prevalencia de anti-VHC + grupos de alto riesgo^{1,2}

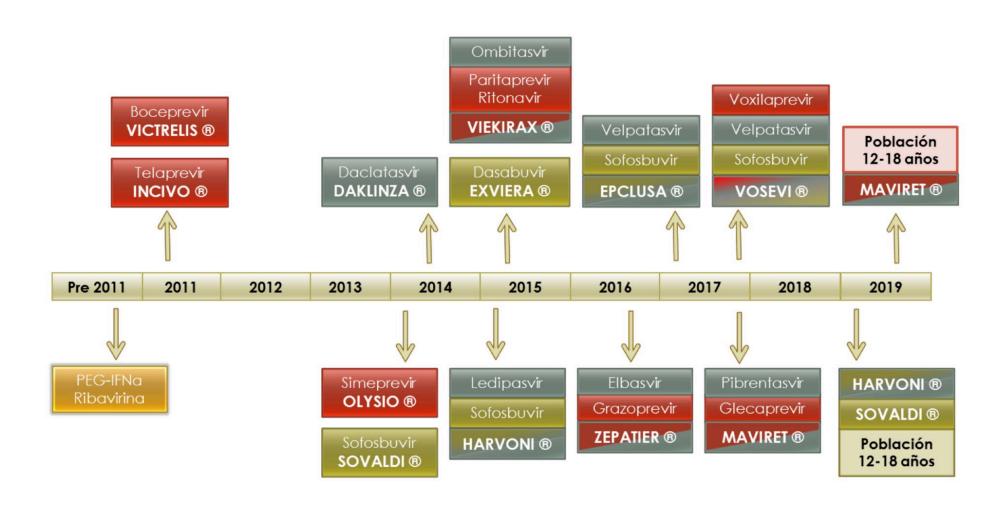
Resultados en la población diana y de coste-utilidad por paciente (descontado)

	QALY	Costes	Incremento de costes	Incremento de QALY	ICUR (€/QALY)
Escenario 1					
Población en general	18,7	€35.497	£10 157	2.027	£9.014
Grupos de alto riesgo	16,7	€17.339	€18.157	2,037	€8.914
Escenario 2					
Población general	18,7	€35.497			
Población con la mayor prevalencia de anti-VHC más grupos de alto riesgo	17,7	€27.764	€7.733	1,038	€7.448

^{1.} Buti M, et al. El cribado y tratamiento del virus de la hepatitis C en población general española entre 20 y 79 años de edad es coste-efectivo. P-132, 43 Congreso Anual AEEH (2018). 2. Gely Vila C. Estrategias de cribado para la eliminación de la Hepatitis C. Enferm Endosc Dig. 2018;5(2):1-3. Disponible en: https://aeeed.com/numero-actual/estrategias-de-cribado-para-la-eliminacion-de-la-hepatitis-c/. Último acceso: abril 2019.

Índice

- Situación epidemiológica. Cribado
- Barreras para el tratamiento antes de los AAD.
- Eficacia y seguridad de los AAD en ancianos.
- Progresión de la enfermedad hepática.


Clin Gastroenterol Hepatol. 2009 February; 7(2): 128–124. doi:10.1016/j.cgh.2008.07.017.

Hepatitis C in the Elderly: Epidemiology, Natural History and Treatment

Ayse L. Mindikoglu, M.D., M.P.H.¹ and Ram R Miller, M.D., C.M., M.S.²

- Muy pocos estudios con pacientes >65 años y ninguno >75 años.
- Muy pocos pacientes ("n" de 30-40) y con edades medias inferiores a 70 años.
- Bajas tasas de RVS (15-30%).
- Muy frecuentes efectos adversos.

Evolución del tratamiento frente al VHC

Productos de: Abbvie, Bristol-Myers Squibb, Gilead, Janssen-Cilag, MSD.

Fármacos frente VHC

Dudas iniciales con la llegada de los AAD

- ¿Se toleran los AAD igual de bien en pacientes mayores que en los más jóvenes?
- ¿Son igual de eficaces?
- ¿Tiene utilidad erradicar el VHC en personas mayores?
- ¿Es coste-eficaz su tratamiento?

Índice

- Situación epidemiológica. Cribado.
- Barreras para el tratamiento antes de los AAD.
- Eficacia y seguridad de los AAD en ancianos.
- Progresión de la enfermedad hepática.

Contents lists available at ScienceDirect

Journal of Clinical Virology

journal homepage: www.elsevier.com/locate/jcv

Short communication

Real life experience with direct-acting antivirals agents against hepatitis C infection in elderly patients

Iria Rodríguez-Osorio^a, Purificación Cid^a, Luis Morano^b, Ángeles Castro^a, Marta Suárez^b, Manuel Delgado^a, Luis Margusino^a, Héctor Meijide^{a,c}, Berta Pernas^a, Andrés Tabernilla^a, José D. Pedreira^a, Álvaro Mena^{a,*}, Eva Poveda^a

	n = 120
Gender, % (n)	
Men	46.7 (56)
Women	53.3 (64)
Age, years old; mean \pm SD	72.6 ± 7.4
>80 years old, % (n)	10.8 (13)
Genotype, %(n)	
1a	5.8 (7)
1b	83.3 (100)
1, unknown subtype	6.7 (8)
2	2.5 (3)
3	0.8(1)
4	0.8(1)
HCV RNA viral load, log UI/mL; median (range)	6.08 (4.09-7.9)
Fibrosis stage, % (n)	
F0-F1	4.2 (5)
F2	10.8 (13)
F3	20.8 (25)
F4	64.2 (77)
Child Pugh Score, % (n)	
A	95.0 (71)
В	5.0(6)
Fibrosis measured by Fibroscan, kPa; median (range)	17.4 (1.1–48.0)
Previous exposure to treatment, % (n)	
Naive	57.5 (69)
Relapser	11.7 (14)
Partial responder	6.7 (8)
Null responder	16.7 (20)
Unknown response	7.5 (9)

HCV regimens used in the study population	n = 120 (%)
Ombitasvir + Paritaprevir/r + Dasabuvir + Ribavirin	31 (25.8%)
Ombitasvir + Paritaprevir/r + Dasabuvir	23 (19.2%)
Sofosbuvir + Ledipasvir	19 (15.8%)
Sofosbuvir + Ledipasvir + Ribavirin	13 (10.8%)
Sofosbuvir + Simeprevir + Ribavirin	11 (9.2%)
Telaprevir + Interferon + Ribavirin	7 (5.8%)
Sofosbuvir + Simeprevir	5 (4.2%)
Simeprevir + Interferon + Ribavirin	3 (2.5%)
Sofosbuvir + Ribavirin	3 (2.5%)
Sofosbuvir + Daclatasvir + Ribavirin	2 (1.7%)
Boceprevir + Interferon + Ribavirin	2 (1.7%)
Ombitasvir + Paritaprevir/r + Ribavirin	1 (0.8%)
Adverse events in the study population	n = 120 (%)
Adverse events	78 (65.0%)
Asthenia	47 (39.2%)
Anemia	45 (37.5%)
Pruritus and dried mucosas	20 (16.5%)
Hyperbilirubinemia	14 (11.7%)
Insomnia	4 (3.3%)
Irritability	3 (2.5%)
Liver decompensation	1 (0.8%)
Ascites	
Encephalopaty	

Journal of Clinical Virology

journal homepage: www.elsevier.com/locate/jcv

Short communication

Real life experience with direct-acting antivirals agents against hepatitis C infection in elderly patients

Iria Rodríguez-Osorio^a, Purificación Cid^a, Luis Morano^b, Ángeles Castro^a, Marta Suárez^b, Manuel Delgado^a, Luis Margusino^a, Héctor Meijide^{a,c}, Berta Pernas^a, Andrés Tabernilla^a, José D. Pedreira^a, Álvaro Mena^{a,*}, Eva Poveda^a

- Buena adherencia (>80%): 97.3%.
- Ajustes previos en medicación concomitante: 35.8%
- Tres discontinuaciones.
- RVS12:
 - ITT: 88.3%
 - PP: 95.5%

Drugs & Aging (2018) 35:843–857 https://doi.org/10.1007/s40266-018-0572-0

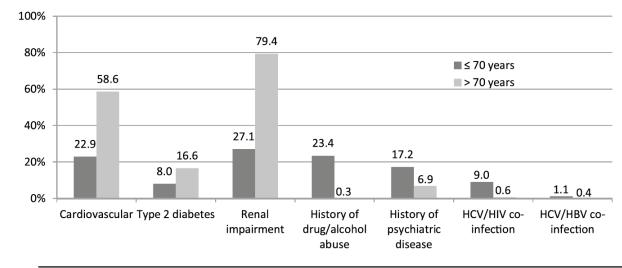
ORIGINAL RESEARCH ARTICLE

Effectiveness and Safety of Direct-Acting Antiviral Combination Therapies for Treatment of Hepatitis C Virus in Elderly Patients: Results from the German Hepatitis C Registry

Georg Dultz¹ · Tobias Müller² · Jörg Petersen³ · Stefan Mauss⁴ · Tim Zimmermann⁵ · Marion Muche² · Karl-Georg Simon⁶ · Thomas Berg⁷ · Stefan Zeuzem¹ · Dietrich Hüppe⁸ · Klaus Böker⁹ · Heiner Wedemeyer^{10,11,12} · Tania M. Welzel¹ · Leberstiftungs-GmbH Deutschland

 Table 1
 Demographic and clinical characteristics of patients who initiated therapy

	\leq 70 years $(N = 6447)^{a}$	$> 70 \text{ years } (N = 686)^a$
Age (years), mean (range)	51.3 (18–70)	75.1 (71–85)
> 80 years, % (n/N)	-	5.5 (38/686)
Female, $\%$ (n/N)	38.8 (2502/6447)	65.0 (446/686)
White, $\%$ (n/N)	96.3 (6208/6447)	98.8 (678/686)
BMI (kg/m ²), mean (\pm SD)	25.9 (4.7)	25.7 (4.3)
HCV genotype, $\%$ (n/N)		
GT1	78.2 (5041/6447)	93.4 (641/686)
GT1a	36.5 (2353/6447)	10.6 (73/686)
GT1b	37.8 (2437/6447)	79.0 (542/686)
Other/unknown	3.9 (251/6447)	3.8 (26/686)
GT2	4.0 (260/6447)	3.6 (25/686)
GT3	12.3 (794/6447)	0.9 (6/686)
GT4	5.4 (345/1017)	1.7 (12/686)
GT5	0.1 (4/6447)	0.3 (2/686)
GT6	0.0 (3/6447)	0.0 (0/686)
HCV RNA ($\times 10^6$ IU/ml), mean (\pm SD)	5.9(0.9)(n=6269)	5.9(0.9)(n=650)
Treatment-experienced, $\%$ (n/N)	48.5 (3127/6447)	51.0 (350/686)
$PegIFN \pm RBV$	96.1 (3004/3127)	96.9 (339/350)
Prior DAA failure	21.4 (670/3127)	12.6 (44/350)
Other pretreatment	3.7 (116/3127)	3.1 (11/350)
Cirrhosis, % (<i>n</i> / <i>N</i>)	27.3 (1761/6447)	44.0 (302/686)


Drugs & Aging (2018) 35:843–857 https://doi.org/10.1007/s40266-018-0572-0

ORIGINAL RESEARCH ARTICLE

Effectiveness and Safety of Direct-Acting Antiviral Combination Therapies for Treatment of Hepatitis C Virus in Elderly Patients: Results from the German Hepatitis C Registry

Georg Dultz¹ · Tobias Müller² · Jörg Petersen³ · Stefan Mauss⁴ · Tim Zimmermann⁵ · Marion Muche² · Karl-Georg Simon⁶ · Thomas Berg⁷ · Stefan Zeuzem¹ · Dietrich Hüppe⁸ · Klaus Böker⁹ · Heiner Wedemeyer^{10,11,12} · Tania M. Welzel¹ · Leberstiftungs-GmbH Deutschland

Similar RVS12 en >≥70 años que en <70 años:

• ITT: 92.6% vs 90.7%

• PP: 95.5% vs 95.6%

	\leq 70 years ($N = 6447$)	>70 years ($N = 686$)	Total ($N = 7133$)
SOF±RBV	598 (9.3%)	32 (4.7%)	630 (8.8%)
$SMV + SOF \pm RBV$	294 (4.6%)	64 (9.3%)	358 (5.0%)
$DCV + SOF \pm RBV$	945 (14.7%)	59 (8.6%)	1004 (14.1%)
$LDV/SOF \pm RBV$	3599 (55.8%)	415 (60.5%)	4014 (56.3%)
$OBV/PTV/r \pm DSV \pm RBV$	1009 (15.7%)	115 (16.8%)	1124 (15.8%)
Other	2 (0.0%)	1 (0.1%)	3 (0.0%)

DCV daclatasvir, DSV dasabuvir, LDV ledipasvir, OBV ombitasvir, PTV/r paritaprevir/ritonavir, RBV ribavirin, SMV simeprevir, SOF sofosbuvir

ORIGINAL RESEARCH ARTICLE

Effectiveness and Safety of Direct-Acting Antiviral Combination Therapies for Treatment of Hepatitis C Virus in Elderly Patients: Results from the German Hepatitis C Registry

Georg Dultz¹ · Tobias Müller² · Jörg Petersen³ · Stefan Mauss⁴ · Tim Zimmermann⁵ · Marion Muche² · Karl-Georg Simon⁶ · Thomas Berg⁷ · Stefan Zeuzem¹ · Dietrich Hüppe⁸ · Klaus Böker⁹ · Heiner Wedemeyer^{10,11,12} · Tania M. Welzel¹ · Leberstiftungs-GmbH Deutschland

Patients, n (%)	Patients \leq 70 years (6447) n (%)	Patients > 70 years (686) n (%)	Total (7133) n (%)
Safety summary			
Any AE	3435 (53.3%)	374 (54.5%)	3809 (53.4%)
Any SAE	235 (3.6%)	52 (7.6%)	287 (4.0%)
Liver-related SAE	44 (0.7%)	14 (2.0%)	58 (0.8%)
Thereof HCC	13 (0.2%)	6 (0.9%)	19 (0.3%)
Discontinuation due to (non-serious) AE	50 (0.8%)	17 (2.5%)	67 (0.9%)
Discontinuation due to SAE	12 (0.2%) ^a	5 (0.7%) ^b	17 (0.2%)
Death	26 (0.4%)	8 (1.2%)	34 (0.5%)
Died while on treatment	8 (0.1%)	3 (0.4%)	11 (0.2%)
AEs in \geq 5% of the patients			
Fatigue	1509 (23.4%)	163 (23.8%)	1672 (23.4%)
Headache	1021 (15.8%)	72 (10.5%)	1093 (15.3%)
Nausea	397 (6.2%)	48 (7.0%)	445 (6.2%)
Insomnia	377 (5.8%)	35 (5.1%)	412 (5.8%)
Pruritus	315 (4.9%)	51 (7.4%)I	366 (5.1%)
Abdominal discomfort	283 (4.4%)	37 (5.4%)	320 (4.5%)

Tratamiento con AAD en población mayor

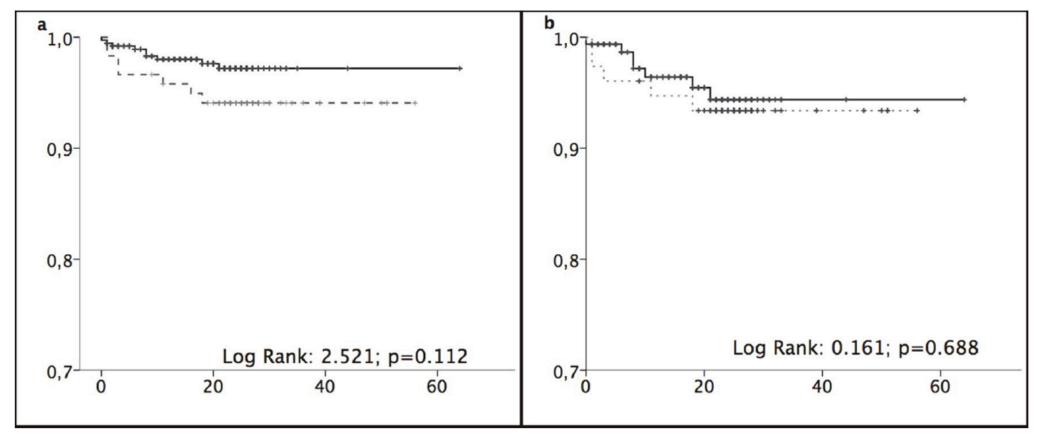
- Es muy seguro (como en los más jóvenes).
- Es muy eficaz.
- A pesar de las comorbilidades y la medicación, no hay un problema actualmente para el manejo de las mismas.

Índice

- Situación epidemiológica. Cribado.
- Barreras para el tratamiento antes de los AAD.
- Eficacia y seguridad de los AAD en ancianos.
- Progresión de la enfermedad hepática.

```
PLOS ONE

RESEARCH ARTICLE


Liver-related events and mortality among elderly patients with advanced chronic hepatitis C treated with direct-acting antivirals

Iria Rodríguez-Osorio 1.2, Alvaro Mena 1.2*, Héctor Meijide 1.3, Luis Morano 4, Manuel Delgado 1.5, Purificación Cid 1.6, Luis Margusino 1.6, José Domingo Pedreira 1, Ángeles Castro 1.2
```

- Estudio prospectivo, comparativo, multicéntrico. Pacientes tratados con AAD de ≥65 años vs <65 años.
- Analiza la incidencia de eventos hepáticos (descompensación, HCC, transplante renal o muerte relacionada con hepatopatía) y mortalidad por cualquier causa.

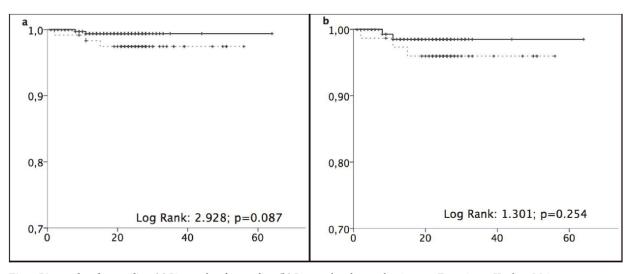
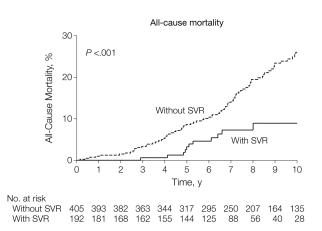
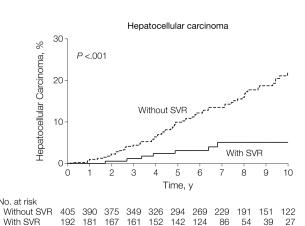
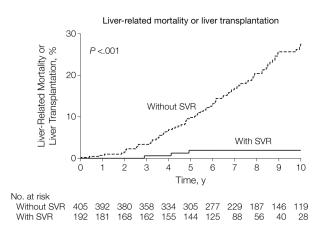
	Elderly (≥ 65 years) n = 120	Younger (<65 years) n = 380	Elderly (>75 years) n = 37
Demographic characteristics	-	-	
Age, years (mean ± SD ^a)	72.6 ± 7.4	51.2 ± 7.1	78.8 ± 3.3
Gender, n (%)			
Men	57 (47.5)	298 (78.4)	20 (54.1)
Virological characteristics and liver status	s		
Genotype, n (%)			
la	7 (5.8)	102 (26.8)	2 (5.4)
1b	100 (83.3)	133 (35.1)	33 (89.2)
1 Unknown subtype	8 (6.8)	0	1 (2.7)
2	3 (2.5)	15 (3.9)	1 (2.7)
3	1 (0.8)	70 (18.4)	0
4	1 (0.8)	60 (15.8)	0
Stiffness ^b , kPa, (median, IQR)	16.0 (10.0–21.4)	12.5 (9.9–20.0)	16.9 (12.0–21.9)
F2, n (%)	18 (15.0)	72 (18.9)	5 (13.5)
F3, n (%)	25 (20.8)	146 (38.4)	4 (10.8)
F4, n (%)	77 (64.2)	162 (42.7)	28 (75.7)
SVR12 ^c , n (%)	111 (99.1)	326 (97.4)	30 (100)
Clinical and liver-related events, n (%)			
Liver-related events	7 (5.8)	9 (2.4)	4 (10.8)
Any tumour	9 (7.5)	13 (3.4)	4 (10.8)
HCC ^d	5 (4.2)	9 (2.4)	2 (5.4)
Liver decompensation	4 (3.3)	4 (1.1)	1 (2.7)
Hydropic decompensation	2 (1.6)	2 (0.5)	0.0
Upper bleeding	1 (0.8)	1 (0.3)	0.0
Encephalopathy	1 (0.8)	1 (0.3)	1 (2.7)
All-cause mortality	10 (8.3)	8 (2.1)	6 (16.2)
Liver-related death	3 (2.5)	2 (0.5)	1 (2.7)
Liver transplantation	0.0	4 (1.1)	0.0

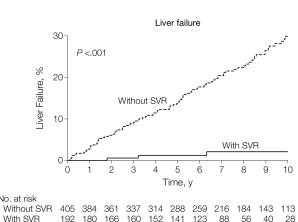
- Mediana de seguimiento 24 meses (16-26).
- Eventos relacionados con hígado en 5.8% de los ≥65 años vs 2.4% en <65 años.
- Todos hicieron cribado de HCC:
 - Incidencia de HCC: 1.91/100 py en ≥65 años vs 1.43/100 en <65 años. En F4: 2.87/100 py en mayores y 3.38/100 py en jóvenes.
 - Mediana de tiempo hasta HCC 8 meses (3-15) tras EOT, sin diferencias entre grupos.

Fig 1. Liver-related events. (a) Liver-related events. (b) Liver-related event in stage F4 patients. Kaplan–Meier curves were compared using log-rank tests between patients aged ≥65 years (black lines) and <65 years (grey dotted lines). Abscissa: time in months. Ordinate: cumulative survival.



Fig 2. All-cause mortality. (a) All-cause mortality. (b) All-cause mortality in stage F4 patients. Kaplan–Meier curves were compared using log-rank tests between patients aged \geq 65 years (black lines) and <65 years (grey dotted lines). Abscissa: time in months. Ordinate: cumulative survival.


Fig 3. Liver-related mortality. (a) Liver-related mortality. (b) Liver-related mortality in stage F4 patients. Kaplan–Meier curves were compared using log-rank tests between patients aged \geq 65 years (black lines) and <65 years (grey dotted lines). Abscissa: time in months. Ordinate: cumulative survival.

Beneficio de RVS ya se conocía y se mantiene con AAD y en pacientes mayores.

En resumen

- La prevalencia de infección por VHC en >65 años es alta, por lo que se deben incluir en las estrategias de cribado.
- Los AAD se han mostrado eficaces y seguros en >65 años tanto en EC como en vida real.
- Las interacciones farmacológicas y las comorbilidades no suponen un problema para el tratamiento con AAD en la mayoría de los >65 años.
- Los >65 años se benefician de la RVS.
- En ausencia de estudios de coste eficacia, con el coste aceptable del QUALY en España (20-25000€) los pacientes ancianos con VHC y expectativa de vida razonable (¿> 1 año?) y calidad de vida deben recibir tratamiento independientemente de su edad.

6ª EDICIÓN DE SESIONES CLÍNICAS INTERHOSPITALARIAS DE HEPATITIS 2021

Tratamiento del VHC en pacientes ancianos

29 de septiembre de 2021

Álvaro Mena de Cea Unidad de Enf Infecciosas, XXIAC Grupo de Virología Clínica, INIBIC-XXIAC alvaro.mena.de.cea@sergas.es