

ARABA ERAKUNDE SANITARIO INTEGRATUA
ORGANIZACIÓN SANITARIA INTEGRADA ARABA

Simulación Montecarlo y gramnegativos multirresistentes

Dr. Andrés Canut Blasco Servicio de Microbiología Hospital Universitario de Álava Vitoria-Gasteiz

Table 2: Annual percentage (%) of antimicrobial non-susceptible and resistant isolates, 2003–2014

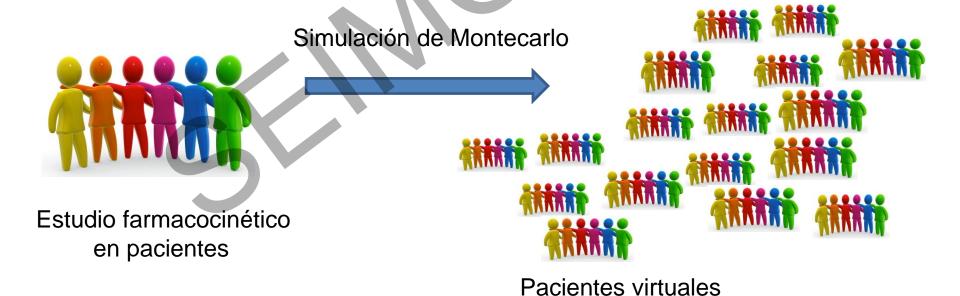
Microorganism by antimicrobial group

Streptococcus pneumoniae Penicillin R Penicillin RI	BGN	Incremento anual (%)	IC95%	p	8 28 26	7 28
Macrolides RI Staphylococcus aureus Oxacillin/meticillin R	E. coli				26	20
Escherichia coli Aminopenicilins R	AMG	0,9	0,7-1	<0,001	65	65
Aminoglycosides R Fluoroquinolones R	FQ	1,1	0,9-1,3	<0,001	15 35	15
Third-generation cephalosporins R Carbapenems R	CEF3	0,8	0,6-0,9	<0,001	13 (1	12
Enterococcus faecalis Aminopenicilins RI	K. pneumoniae				4	1
HL gentamicin R Vancomycin R	AMG	1,1	0,9-1,3	<0,001	43 <1	39 (1
Enterococcus faecium Aminopenicilins Ri	FQ	1	0,7-1,4	<0,001	85	83
HL gentamicin R Vancomycin R Klebsiella pneumoniae	CEF3	1,3	1-1,5	<0,001	36 (1	35 2
Aminoglycosides R Fluoroquinolones R	CARBAPENEM	0,1	0,04-0,2	0,008	16 22	14
Third-generation cephalosporins R Carbapenems R	P. aeruginosa				20	18
Pseudomonas aeruginosa Piperacillin + tazobactam R	CARBAPENEM	0,4	0,2-0,6	0,02	9	8
Ceftazidime R Carbapenems R	AMG	1	0,4-1,5	0,02	9 18	18
Aminoglycosides R Fluoroquinolones R	FQ	0,7	0,3-1,1	0,03	15 23	17 25
A <i>cinetobacter</i> spp Fluoroquinolones R				Canut A [©]	75	67
Aminoglycosides R Carbapenems R Tendenci	as para España. Annual r	report of the EARS	-Net 2014.www.ecdc	.europe.eu	69 76	60 65

BGN: % multirresistencia en Europa 2011-2014

		Media Europa	España	País con peor indicador
R a AMG/FQ/CEF3	E. coli	3,8-4,8	4,9-5,3	10,1-19,7 (Bulgaria)
	K. pneumoniae	16,7-19,6	8,3-10	62,4-63,3 (Eslovaquia)
R a AMG/FQ/CEF3/CP	E. coli	19/52788 <0,1		
	K. pneumoniae	1044/18180 5,7		
R a >=3 PIP/CEFTAZ/FQ/AMG/CP	P. aeruginosa	14,1-13,3	12,6-12,4	60-59,6 (Rumanía)
R a los 5 grupos	P. aeruginosa	635/11649 5,5		
R a FQ, AMG y CP	Acinetobacter spp	1870/3910 47,8	70-56,4	74,5-86,9 (Grecia)

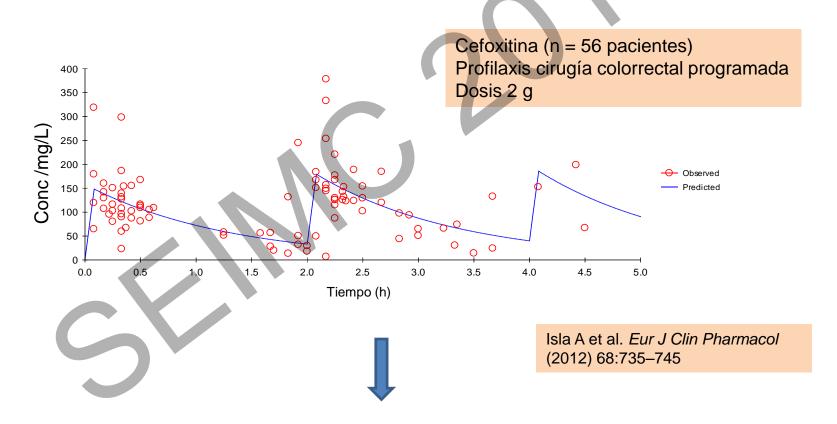
Historia del análisis PK/PD


- √ 1940-50. Eagle. Bactericidia tiempo-dependiente de la penicilina.
- ✓ 1970. Shah et al. Clasifica antibióticos en tiempo-dependientes y concentración-dependientes
- ✓ Mediados años 70. Craig et al. relacionan índices PK/PD con resultados clínicos en modelos animales
- ✓ 1990-2000. Forrest, Drusano y Ambrose correlacionan índices
 PK/PD con resultados clínicos en humanos, similares a los modelos
 animales
- ✓ Actualmente, predicción de la probabilidad de éxito de los diferentes regímenes de dosificación mediante
 - Farmacocinética poblacional
 - Simulación de Montecarlo

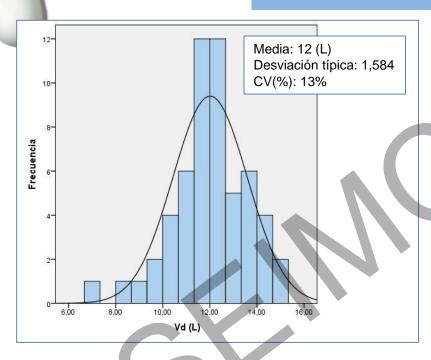
Análisis PK/PD **Modelo PK: Antibiótico** Parámetros PK (media y varianza) Covariables (peso corporal, CLcr, etc.) Sensibilidad in vitro: CMI Modelo PK/PD: Relación parámetros PK con CMI SIMULACIÓN DE Bacteria **Paciente** MONTECARLO

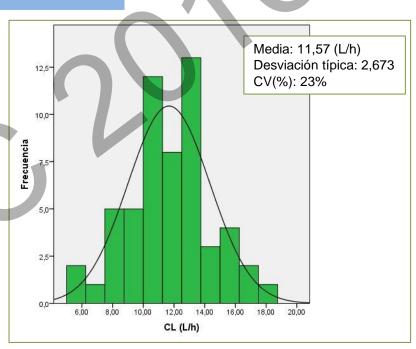
Probabilidad de que el índice PK/PD (fAUC_{24h}/CMI, fC_{max}/CMI , $fT_{>CMI}$) alcance el valor relacionado con la eficacia

Expandir el tamaño de una muestra y calcular la probabilidad de un determinado resultado (por ejemplo, la probabilidad de éxito de un tratamiento)



- Modelo farmacocinético (ensayo clínico):
 - Parámetros farmacocinéticos
 - Covariables (Cl_{CR}, peso corporal, edad gestacional, etc...)
- Modelo farmacodinámico (índices de eficacia: fT_{>CMI}, fAUC/CMI, C_{max}/CMI)
- Simulación (generar n individuos virtuales)
- Cálculo de probabilidad de éxito del tratamiento (probabilidad de que en los n pacientes virtuales, el índice PK/PD alcance el valor mínimo relacionado con la eficacia)


Modelo farmacocinético

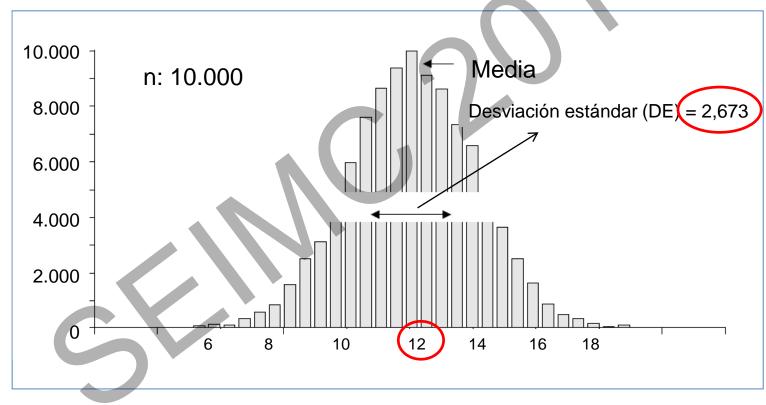


Análisis farmacocinético poblacional (NONMEN)

Modelo farmacocinético

Cefoxitina (n: 56)

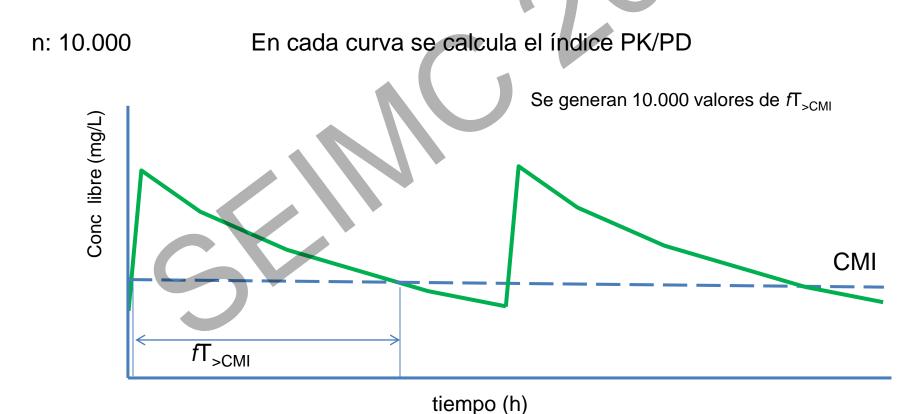
Modelo de covariables


 $CL = 11.5 \times (CL_{CR}/77)^{0.52}$

Frecuencia

Simulación de Montecarlo

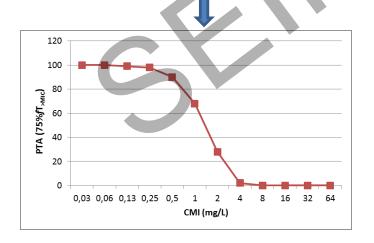
Simulación de Montecarlo



Distribución del parámetro PK (CL) en 10.000 individuos virtuales, con el mismo valor medio y la misma variabilidad (DE) que en los pacientes reales.

Simulación de Montecarlo

A partir de los valores de los parámetros farmacocinéticos, se generan 10.000 curvas concentración-tiempo



Cálculo de la probabilidad de éxito del tratamiento

(Probabilidad de que el índice PK/PD alcance el valor relacionado con la eficacia)

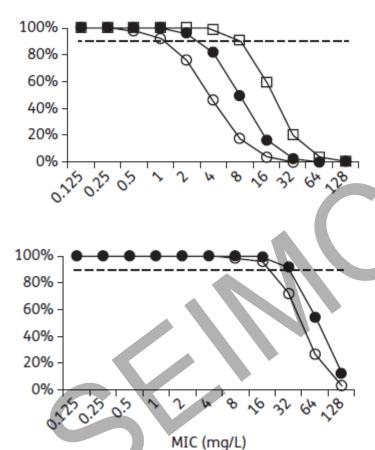
Tratamiento de una infección causada por un microorganismo cuyo valor de CMI es conocido

PTA
Probability of target attainment

Tratamiento empírico: no se conoce la CMI y se tiene en cuenta la distribución de CMIs

> 90%

CFR
Cumulative fraction of response


Enterobacterias productoras de BLEE

- ✓ Piperacilina-tazobactam
- ✓ Meropenem
- ✓ Ceftolozano-tazobactam
- ✓ Ceftarolina-avibactam
- ✓ Ceftazidima-avibactam
- ✓ Aztreonam-avibactam

PTA (fT_{>MIC}=100%)

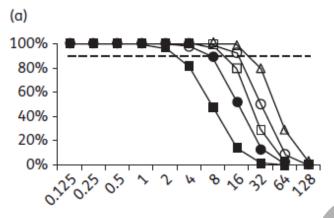
Farmacocinética poblacional (piperacilina-tazobactam)

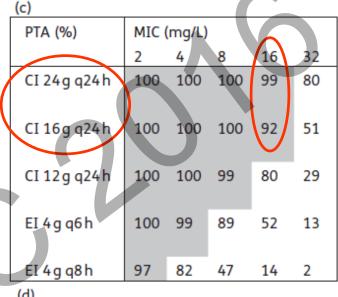
PTA (%)	MIC (mg/L)			
	1 (2	4	8	16
4g q4h	100	100	99	91	60
4g q6h	99	96	82	49	16
4g q8h	92	76	46	17	3

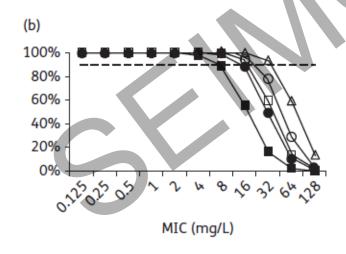
CI	CR	1	00
m	L/n	ni	n

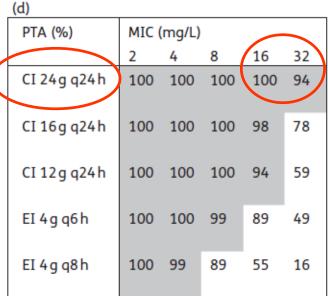
PTA (%)	MIC (mg/L)								
	4	8	16	32	64				
4g q6h	100	100	100	92	55				
4g q8h	100	100	96	72	27				

Cl_{CR} 10 mL/min


Retamar et al. AAC 2013 Evolución clínica favorable en bacteriemias *E. coli* BLEE de foco urinario o CMI ≤ 2 mg/L EUCAST S ≤ 8 mg/L Enterobacterias S ≤ 16 mg/L *Pseudomonas*


Asín-Prieto et al. JAC 2014


PTA (fT_{>MIC}=100%)


Farmacocinética poblacional (piperacilina-tazobactam)

Cl_{CR} 100 mL/min

Cl_{CR} 50 mL/min

Asín-Prieto et al. JAC 2014

PTA Probability of target attainment

Probabilidad de que un valor específico del índice PK/PD alcance el mínimo valor relacionado con la eficacia

Éxito: PTA>90%

Table 4 PTA values of meropenem

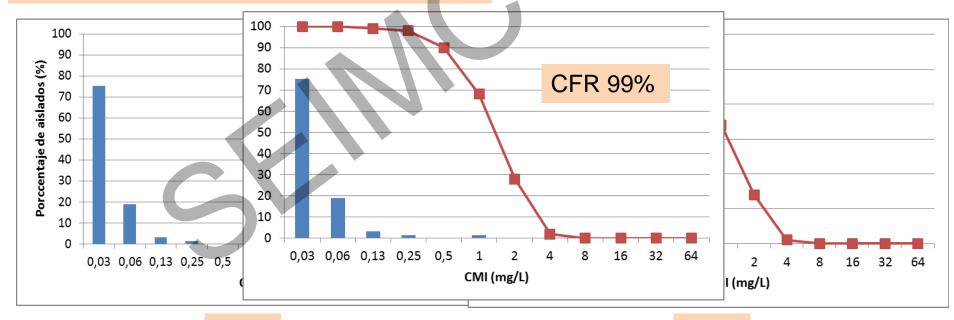
PDT	T_{inf}	Dose					CL_{ζ}	R 100) mL/	min				
\neg	-	0.5 g	100	100	100	100	100	100	95	36	0	0	0	0
	0.5 h	1 g	100	100	100	100	100	100	100	94	34	0	0	0
40% fT> _{MBC}	0	2 g	100	100	100	100	100	100	100	100	94	35	0	0
Ε.														
% 04		0.5 g	100	100	100	100	100	100	100	98	1	0	0	0
4	3 h	1 g	100	100	100	100	100	100	100	100	98	0	0	0
\vee		2 g	100	100	100	100	100	100	100	100	100	98	0	0
	.п	0.5 g	100	100	98	90	68	28	2	0	0	0	0	0
\bigcap	0.51	1 g	100	100	99	98	90	68	28	2	0	0	0	0
×	0	2 g	100	100	100	99	97	90	68	28	2	0	o	0
75% <i>f</i> T _{>MIC}														
75%		0.5 g	100	100	100	100	98	82	26	0	0	0	0	0
	3 h	1 g	100	100	100	100	100	98	81	26	О	О	О	0
\smile		2 g	100	100	100	100	100	100	98	81	26	0	О	0
\sim	.0	0.5 g	95	88	70	43	15	2	0	0	0	0	0	0
/ ₂ \	0.5 h	1 g	98	95	87	70	43	15	2	О	О	0	o	0
Z.		2 g	99	98	95	87	70	42	15	2	0	0	0	o
£ 9,														
100% fT>MG	_	0.5 g	100	99	95	81	51	15	1	0	o	О	0	0
「 /	3.h	1 g	100	100	99	95	81	50	14	1	0	0	0	o
<u> </u>		2 g		100	100	99	95	81	51	14	1	0	0	0
MI	C (mg	/L)	0.03	0.06	0.13	0.25	0.5	1	2	4	8	16	32	64

EUCAST S ≤ 2 mg/L para dosis 1 g/8h infusión 30 min

fT_{>CMI} > 40% (bactericida) fT_{>CMI} > 75% (neutropenia febril) fT_{>5xCMI} > 100% (resultados clínicos óptimos neumonía)

Isla A. et al. Eur J Clin Microbiol Infect Dis 2016; 35: 511-519

Grey shaded values when PTA≥90 %



CFR Cumulative fraction of response

Probabilidad de que un valor específico del índice PK/PD alcance el mínimo valor relacionado con la eficacia para una población determinada de microorganismos

Distribución de CMIs *K. pneumoniae* BLEE para España 2011-2013 Estudio TEST

Dosis 1 g/8h infusión 30 min

CMIs

PTAs

CFR Cumulative fraction of response Probabilidad éxito > 90%

Valores de CFR de meropenem frente a K. pneumoniae

		Infusión 3h								
	7	'5% fT>C	MI	1	MI					
	0,5 g	0,5 g 1 g 2 g			1 g	2 g				
Clcr 100 mL/min										
España										
BLEE +	99	100	100	96	98	99				
BLEE -	99	100	100	95	98	99				
EEUU										
BLEE +	84	87	90	80	83	85				
BLEE -	98	98	98	96	97	98				

Enterobacterias productoras de carbapenemasas

- ✓ Meropenem
- √ Colistina
- √ Tigeciclina
- √ Fosfomicina
- ✓ Aminoglucósidos

PTA (éxito ≥ 90%)
Probability of target attainment

Table 4 PTA values of meropenem

DDT	æ	D					CT	100	T	in la				
PDT	T_{inf}	Dose	400	400		400		R 100			-	-	-	_
	-9	0.5 g	100	100	100	100	100	100	95	36	0	0	0	0
	0.5 h	1 g	100	100	100	100	100	100	100	94	34	0	0	0
. 홋		2 g	100	100	100	100	100	100	100	100	94	35	0	0
40% fT> _{MG}														1
8		0.5 g	100	100	100	100	100	100	100	98	1	0	0	0
4	3 Ъ	1 g	100	100	100	100	100	100	100	100	98	0	0	0
\bigcirc		2 g	100	100	100	100	100	100	100	100	100	98	0	0
		0.5 g	100	100	98	90	68	28	2	0	0	0	0	0
- 1	5.1	1 g	100	100	99	98	90	68	28	2	0	0	0	0
8	0.5	2 g	100	100	100	99	97	90	68	28	2	0	0	0
75% <i>f</i> T _{>MIC}		2.8	100	100	100	1	21		O.C.	20				
%		0.50	100	100	100	100	98	82	26	0	0	0	0	0
75	-9	0.5 g		_					· .					
- 1	60	1 g	100	100	100	100	100	98	81	26	0	0	0	0
		2 g	100	100	100	100	100	100	98	81	26	0	0	0
- 1	_=	0.5 g	95	88	70	43	15	2	0	0	0	0	0	0
	0.5 h	1 g	98	95	87	70	43	15	2	0	o	o	o	0
. 못	_	2 g	99	98	95	87	70	42	15	2	0	0	0	0
100% fT _{>ME} C														
8		0.5 g	100	99	95	81	51	15	1	o	o	0	o	0
\simeq	3.h	1 g	100	100	99	95	81	50	14	1	0	0	0	0
		2 g	100	100	100	99	95	81	51	14	1	0	0	0
MI	C (mg		0.03	0.06	0.13	0.25	0.5	1	2	4 (8	16	32	64

EUCAST S ≤ 2 mg/L para dosis 1 g/8h infusión 30 min

- ✓ Tratamiento combinado con meropenem a dosis altas
 2g/8h en infusión 3h si CMI
 ≤ 8 mg/L
- ✓ Depende perfil CPasa y nivel de endemia local

Meropenem:

 $fT_{>CMI} > 40\%$ (bactericida)

 $fT_{>CMI} > 75\%$ (neutropenia febril)

fT_{>5xCMI} > 100% (resultados clínicos óptimos neumonía)

Isla A. et al. Eur J Clin Microbiol Infect Dis 2016; 35: 511-519

ALGORITMO DE ANTIBIOTERAPIA COMBINADA ESTRATIFICADA POR SITIO DE INFECCION Y ANTIBIOGRAMA (de Petrosillo N et al Expert Rev Anti Infect Ther 2013)

Bacteriemia

Meropenem AD + colistina

+

AMG/Tigeciclina/Fosfomicina/rifampicina

Pulmón

Meropenem AD + colistina

+

Tigeciclina/AMG/Fosfomicina/rifampicina

GI/biliar

Meropenem + colistina + tigeciclina AD

+

Fosfomicina/rifampicina

Meropenem si CMIs ≤ 16 mg/L

Dosis altas 6 g/día

- infusión prolongada (CMI ≤ 8 mg/L)
- perfusión continua (CMI ≤ 16 mg/L

Colistina si CMIs ≤ 2 mg/L

Dosis carga 9 MU (max 300 mg colistina base/ 720 mg CMS) y mantenimiento 4,5 MU/12h C_{ss} 2,5 mg/L (70 kg/CL_{cr} 80 mL/min) 4,5 MU/24h CL_{cr} 20-50 mL/min 4,5 MU/48h CL_{cr} <20 mL/min <20% nefrotoxicidad

¿CL_{cr} altos y CMI ≥ 1 mg/L?

Tigeciclina si CMIs ≤ 1 mg/L

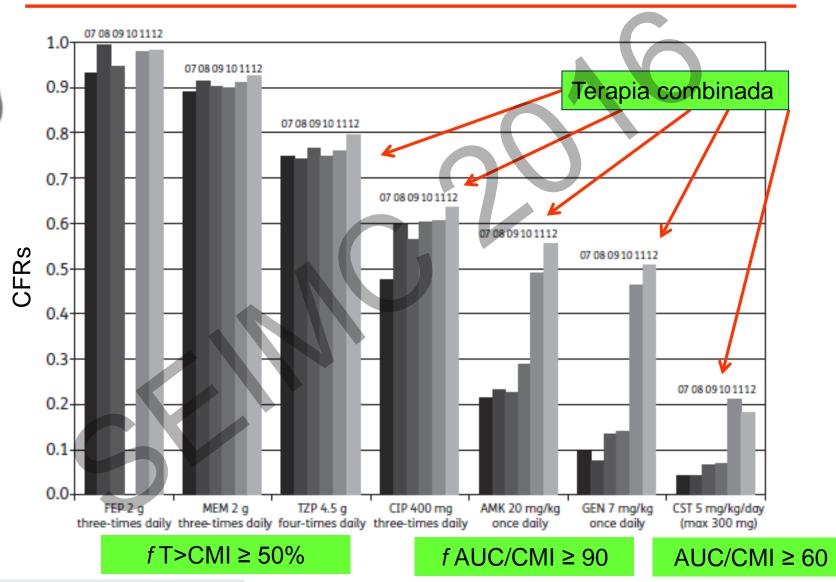
Dosis carga 200 mg y mantenimiento de 100 mg/12h

PTA ≥ 90% si CMI ≤ 1 mg/L

Garonzik AAC 2011; Dalfino CID 2012

Canut EJCMID 2012; Xie IJID 2014

Pseudomonas aeruginosa


- ✓ AB habituales con actividad frente a Pseudomonas
- ✓ Ceftolozano-tazobactam
- ✓ Ceftazidima-avibactam
- ✓ Aztreonam-avibactam

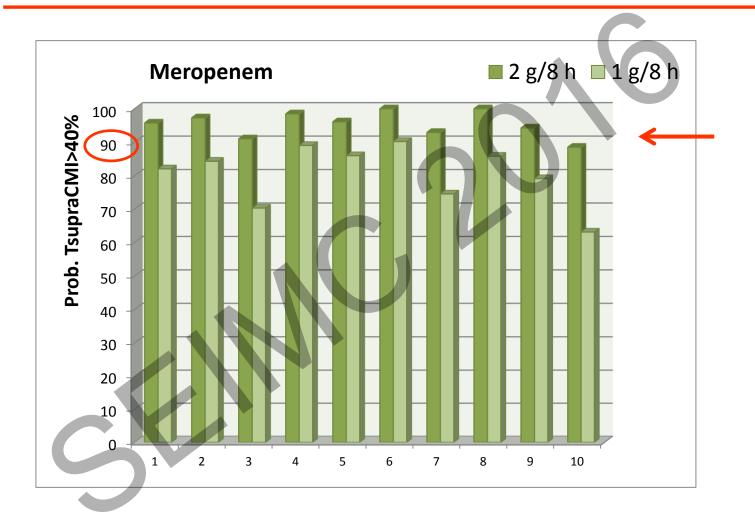
Acinetobacter baumannii

✓ AB habituales con actividad frente a Acinetobacter

Antimicrobianos habituales con actividad frente a *P. aeruginosa* Evolución de las CFRs en hospitales Canadá (CANWARD) 2007-2012

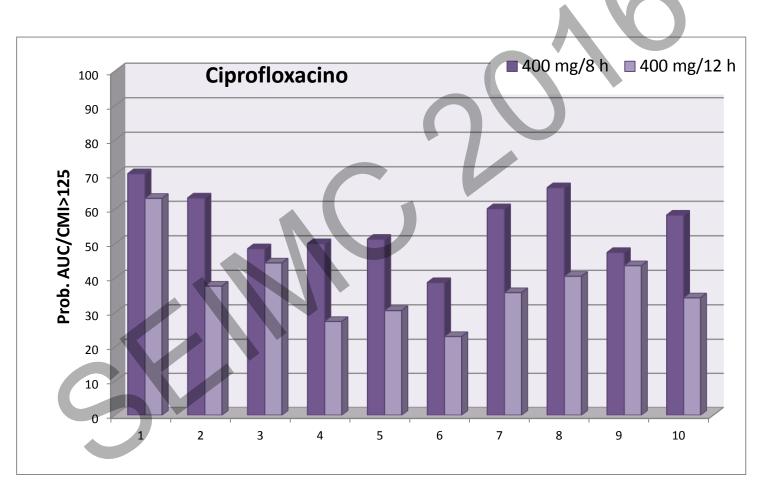
Zelenitsky S et al JAC 2013

Antimicrobianos habituales con actividad frente a *P. aeruginosa* Evolución de las CFRs en hospitales Canadá (CANWARD) 2007-2012


Antimicrobial dosing regimen	2007	2008	2009	2010	2011	2012 ^a	D. Wasiana
Cefepime							Dosificacione
2 g iv twice daily	0.79	0.95	0.86	NA ^b	0.90	0.93	elevadas
2 g iv twice daily (t' 3 h)	0.85	1.00	0.90	NA	0.94	0.96	
2 g iv three-times daily	0.93	1.00	0.95	NA	0.98	0.98	
2 g iv three-times daily (t' 3 h)	0.96	1.00	0.96	NA	0.99	0.99	-
Meropenem							
500 mg iv four-times daily	0.84	0.86	0.85	0.84	0.86	0.86	
1 g iv three-times daily	0.83	0.86	0.85	0.84	0.86	0.86	
1 g iv three-times daily (t' 3 h)	0.89	0.92	0.91	0.90	0.92	0.93	
2 g iv three-times daily	0.89	0.91	0.90	0.90	0.91	0.92	
2 g iv three-times daily (t' 3 h)	0.94	0.96	0.95	0.94	0.95	0.97	
Piperacillin/tazobactam	12						
3.375 g iv four-times daily	0.69	0.69	0.72	0.70	0.71	0.74	
3.375 g iv four-times daily (t' 3 h)	0.85	0.83	0.85	0.84	0.85	0.90	
3.375 g iv three-times daily (t' 4 h)	0.82	0.81	0.83	0.81	0.83	0.87	
4.5 g iv four-times daily	_					0.79	
4.5 g iv four-times daily (t' 3 h)	0.92	0.91	0.90	0.93	0.92	0.94	
4.5 g iv three-times daily (t' 4 h)	0.85	0.83	0.85	0.84	0.85	0.90	
Ciprofloxacin							
400 mg iv twice daily	0.39	0.52	0.50	0.54	0.54	0.58	
400 mg iv three-times daily	0.48	0.60	0.56	0.60	0.60	0.64	

t', infusion time.

PD targets are $\%fT_{>MIC} \ge 50\%$ for cefepime, meropenem and piperacillin/tazobactam and $fAUC/MIC \ge 90$ for ciprofloxacin.


Antimicrobianos habituales con actividad frente a *P. aeruginosa* CFRs en 10 hospitales españoles (Grupo GEIPC)

f T>CMI ≥ 40%

Antimicrobianos habituales con actividad frente a *P. aeruginosa* CFRs en 10 hospitales españoles (Grupo GEIPC)

Eskerrik asko Muchas gracias

