

Aplicaciones de las técnicas de diagnóstico rápido en el desescalamiento de los antimicrobianos: impacto clínico y en el consumo de antimicrobianos

Emilia Cercenado Servicio de Microbiología Hospital General Universitario Gregorio Marañón. Madrid

XX Congreso SEIMC. Barcelona. 26 de mayo de 2016

PROA

Programas de optimización del uso de antimicrobianos (Guías IDSA, documento consenso SEIMC-SEFH-SEMPSPH)

- Objetivo primario:
 - Optimizar la evolución clínica
 - Minimizar consecuencias del uso de antimicrobianos (toxicidad, selección de patógenos, emergencia de R)
- Objetivo secundario:
 - Reducción de costes
- PROA+ programas de control de infecciones

Dellit TH, et al, CID 2007; 44:159

Rodríguez-Baño J, EIMC 2012; 30 (1): 22.e1-22.e23

PROA y laboratorio de microbiología

- The clinical microbiology laboratory plays a critical role in antimicrobial stewardship by providing patient-specific culture and susceptibility data to optimize individual antimicrobial management and by assisting infection control efforts in the surveillance of resistant organisms and in the molecular epidemiologic investigation of outbreaks (A-III).
- Core members of a multidisciplinary antimicrobial stewardship team include an infectious diseases physician and a clinical pharmacist with infectious diseases training (A-II) who should be compensated for their time (A-III), with the inclusion of a clinical microbiologist, an information system specialist, an infection control professional, and hospital epidemiologist being optimal (A-III).

Dellit TH, et al, CID 2007; 44:159

Rodríguez-Baño J, EIMC 2012; 30 (1): 22.e1-22.e23

PROA

Clinical Infectious Diseases

IDSA GUIDELINE

Clinical Infectious Diseases® 2016;62(10):e51-e77
Implementing an Antibiotic Stewardship Program:
Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America

Tamar F. Barlam, ^{1,a} Sara E. Cosgrove, ^{2a} Lilian M. Abbo, ³ Conan MacDougall, ⁴ Audrey N. Schuetz, ⁵ Edward J. Septimus, ⁶ Arjun Srinivasan, ⁷ Timothy H. Dellit, ⁸ Yngve T. Falck-Ytter, ⁹ Neil O. Fishman, ¹⁰ Cindy W. Hamilton, ¹¹ Timothy C. Jenkins, ¹² Pamela A. Lipsett, ¹³ Preeti N. Malani, ¹⁴ Larissa S. May, ¹⁵ Gregory J. Moran, ¹⁶ Melinda M. Neuhauser, ¹⁷ Jason G. Newland, ¹⁸ Christopher A. Ohl, ¹⁹ Matthew H. Samore, ²⁰ Susan K. Seo, ²¹ and Kavita K. Trivedi²²

Microbiología y diagnóstico de laboratorio:

- Informes de antimicrobianos por servicios
- Informes selectivos de sensibilidad a antimicrobianos
- Uso de pruebas rápidas para detección de virus respiratorios
- Pruebas de diagnóstico rápido en hemocultivos
- Determinación de procalcitonina en pacientes de UCI
- Pacientes hematológicos: marcadores de infección fúngica

PROA

Clinical Infectious Diseases

IDSA GUIDELINE

Clinical Infectious Diseases® 2016;62(10):e51–e77
Implementing an Antibiotic Stewardship Program:
Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America

Tamar F. Barlam, ^{1,a} Sara E. Cosgrove, ^{2,a} Lilian M. Abbo, ³ Conan MacDougall, ⁴ Audrey N. Schuetz, ⁵ Edward J. Septimus, ⁶ Arjun Srinivasan, ⁷ Timothy H. Dellit, ⁸ Yngve T. Falck-Ytter, ⁹ Neil O. Fishman, ¹⁰ Cindy W. Hamilton, ¹¹ Timothy C. Jenkins, ¹² Pamela A. Lipsett, ¹³ Preeti N. Malani, ¹⁴ Larissa S. May, ¹⁵ Gregory J. Moran, ¹⁶ Melinda M. Neuhauser, ¹⁷ Jason G. Newland, ¹⁸ Christopher A. Ohl, ¹⁹ Matthew H. Samore, ²⁰ Susan K. Seo, ²¹ and Kavita K. Trivedi²²

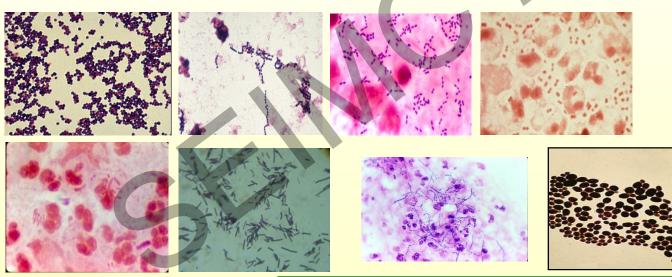
Todas las recomendaciones microbiológicas:

- Recomendación débil
- Baja-moderada calidad de la evidencia

PROA y laboratorio de microbiología

- Identificación rápida y sensibilidad a antimicrobianos
- Interpretación e informe del antibiograma
- Informes selectivos de sensibilidad a antimicrobianos
- Diagnóstico molecular en microorganismos de difícil crecimiento
- Vigilancia de la resistencia
- Detección rápida de mecanismos de resistencia
- Vigilancia y detección rápida de microorganismos multirresistentes (SARM, ERV, BLEE+, carbapenemasas+, C.difficile)
- Tipado molecular: investigación de brotes
- Pruebas rápidas para identificar pacientes con infecciones bacterianas vs víricas

Dellit TH, et al, CID 2007; 44:159


Rodríguez-Baño J, EIMC 2012; 30 (1): 22.e1-22.e23

Identificación y sensibilidad a antimicrobianos

- PCR múltiple (Septifast, SepsiTest)
- 3 ml sangre con EDTA (1,5 ml)
- 4 h
- Hemocultivos (12 h- 5 días)
- -Tinción de Gram

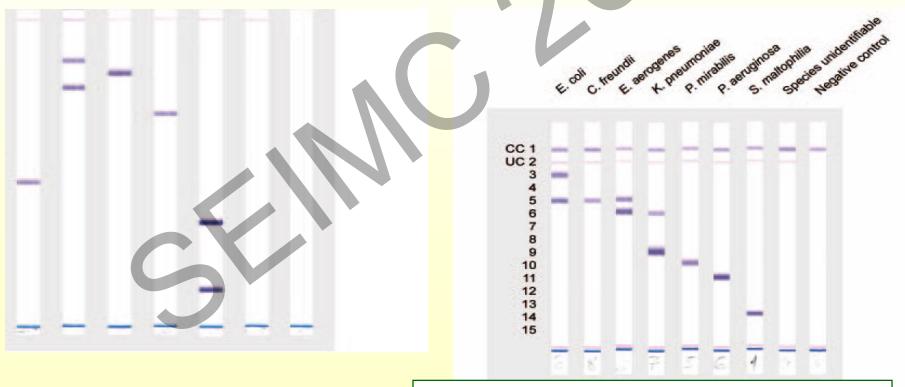
Falagas ME. Crit Care Med 2008; 36:1660

EJCMID 2011; 30:1127-34

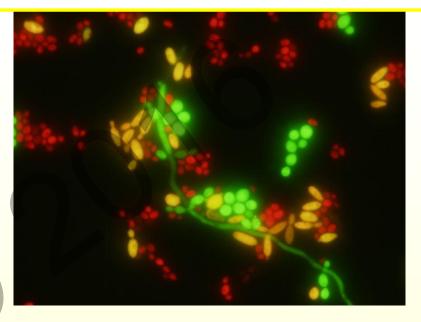
Wellinghausen N, et al. J Clin Microbiol 2009; 47:2759

BACTERIEMIA y FUNGEMIA:

- Hemocultivos:
- Tinción de Gram (10 minutos)
- Detección antígenos (estreptococos, enterococos, neumococo) (20 minutos)
- Detección PBP2a (SARM) (20 minutos)
- PCR tiempo real-SARM/SASM (50 minutos)
- Multiplex PCR (Gram+/Gram-) (4 horas)
- PNA FISH (levaduras) (2 horas)



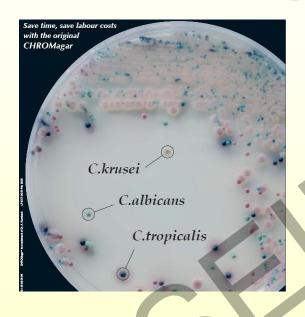
Identificación rápida + detección genes de R


- Multiplex PCR Gram+/Gram-/mecA/vanA 279 hemoc. +:
- 243/279 (87,1%) especies recogidas en panel
- 148/152 Gram+ ID correcta (97,4%)
- 89/91 Gram- ID correcta (97,8%)
- 12/13 S. aureus mecA+ correcta; 1 E. faecium vanA+ correcta

Eigner U, et al. J Clin Microbiol 2005; 43:5256

FUNGEMIA:

- Hemocultivos
- Sondas fluorescentes
- PNA FISH (2 horas)



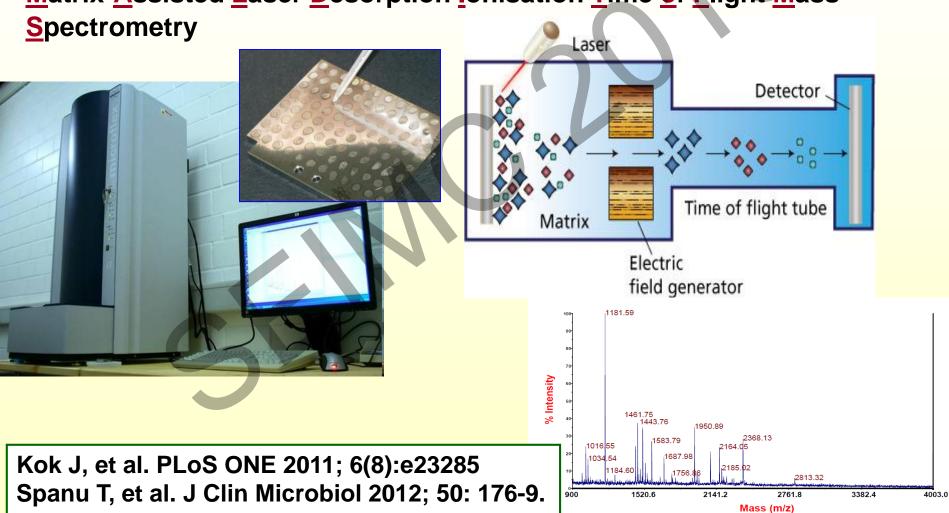
- Candida spp. en 207/216 (96%) hemocultivos +
- 100% C. albicans; 94% C. parapsilosis; 100% C. glabrata; 100% C. krusei; 94% C. tropicalis (31/33)
- Verde: C. albicans/C. parapsilosis probable fluconazol-S
- Rojo: C. krusei/C. glabrata probable fluconazol-R
- Amarillo: C. tropicalis probable R inducible a fluconazol

Hall L, et al. J Clin Microbiol 2012; 50:1446

FUNGEMIA:

- Hemocultivos
- Medios cromogénicos (18-24 h)




- C. tropicalis (azul)
- C. krusei (rojo)
- C. parapsilosis (blanco-rosado)

BACTERIEMIA Y FUNGEMIA: hemocultivos

- MALDI-TOF MS. Espectrometría de masas (30 minutos)

Matrix-Assisted Laser Desorption Ionisation Time of Flight Mass

MALDI-TOF en hemocultivos

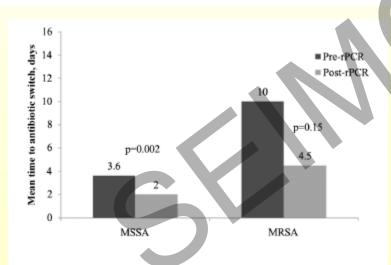
Clinical Infectious Diseases

2013;57(9):1237-45

Impact of Rapid Organism Identification via Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Combined With Antimicrobial Stewardship Team Intervention in Adult Patients With Bacteremia and Candidemia

Angela M. Huang,^{1,2} Duane Newton,^{5,6} Anjly Kunapuli,^{1,2} Tejal N. Gandhi,³ Laraine L. Washer,^{3,4} Jacqueline Isip,^{1,2} Curtis D. Collins,^{1,2} and Jerod L. Nagel^{1,2}

MALDI-TOF + intervención del equipo PROA: reducción del tiempo de identificación y del tiempo de administración de tratamiento antimicrobiano óptimo

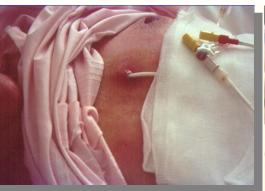

Table 3.	Clinical	and Treatme	nt Dolated	Outcomes
Table 3.	Limicar	an d Treatme	int-kelated	Uutcomes

	1	Total	
Outcome	Preintervention (n = 256)	Intervention (n = 245)	<i>P</i> Value
Clinical outcomes			
30-day all-cause mortality	52 (20.3)	31 (12.7)	.021
Time to microbiological clearance, d	3.3 ± 4.8	3.3 ± 5.7	.928
Length of hospitalization, d ^a	14.2 ± 20.6	11.4 ± 12.9	.066
Length of ICU stay, d ^a	14.9 ± 24.2	8.3 ± 9.0	.014
Recurrence of same BSI	15 (5.9)	5 (2.0)	.038
30-day readmission with same BSI	9 (3.5)	4 (1.6)	.262
Treatment-related outcomes			
Time to effective therapy, h	30.1 ± 67.7	20.4 ± 20.7	.021
Time to optimal therapy, h	90.3 ± 75.4	47.3 ± 121.5	<.001

An Antimicrobial Stewardship Program's Impact with Rapid Polymerase Chain Reaction Methicillin-Resistant *Staphylococcus aureus/S. aureus* Blood Culture Test in Patients with *S. aureus* Bacteremia

Clinical Infectious Diseases 2010;51(9):1074-1080

Karri A. Bauer, Jessica E. West, Joan-Miquel Balada-Llasat, Preeti Pancholi, Kurt B. Stevenson, and Debra A. Goff

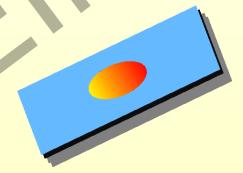

Figure 2. Mean time to antibiotic switch from vancomycin to cefazolin or nafcillin for methicillin-susceptible *Staphylococcus aureus* (MSSA) bacteremia and vancomycin to daptomycin for methicillin-resistant *S. aureus* (MRSA) bacteremia. rPCR, rapid polymerase chain reaction MRSA/SA blood culture test.

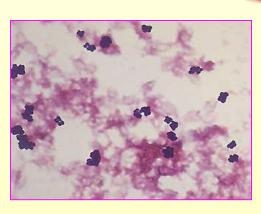
- Detección rápida
- Comunicación inmediata
- Tratamiento eficaz antes
- Disminuye estancia hospitalaria
- Disminuye costes

Pruebas rápidas para detectar infecciones bacterianas

INFECCIÓN ASOCIADA A CATÉTER:

Cultivos superficiales (piel, conexión)





Gram de catéter

Pruebas rápidas para detectar infecciones bacterianas

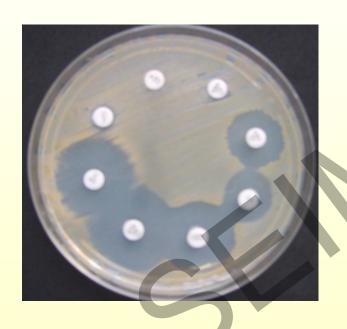
Cultivos periféricos en el diagnóstico de infección asociada a catéter

A Conservative Procedure for the Diagnosis of Catheter-Related Infections

• VPP: 66,2%

• VPN: 96,7%

Cultivos superficiales negativos: punta negativa


Test negativo: descarta infección de catéter

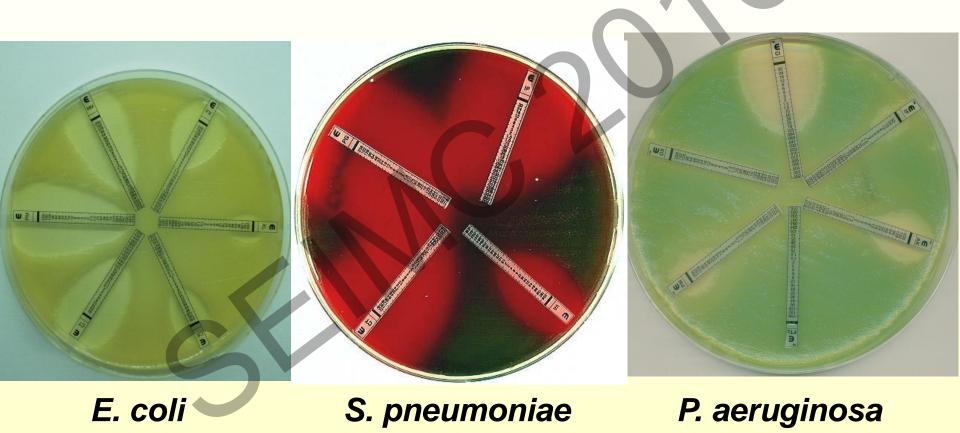
Cercenado E, et al. Arch Intern Med 1990; 150:1417

Sensibilidad a antimicrobianos

Hemocultivos

- Antibiograma directo: cualitativo (18-24 h)

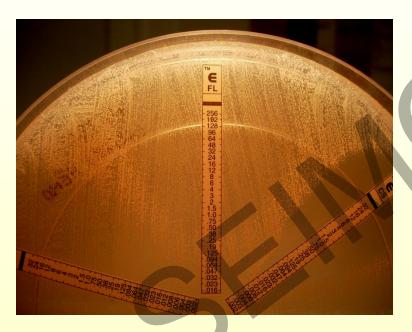
SARM


BLEE

E. faecium

Sensibilidad a antimicrobianos

Hemocultivos


- Antibiograma directo: cuantitativo (E-test 18-24 h)

Sensibilidad a antifúngicos

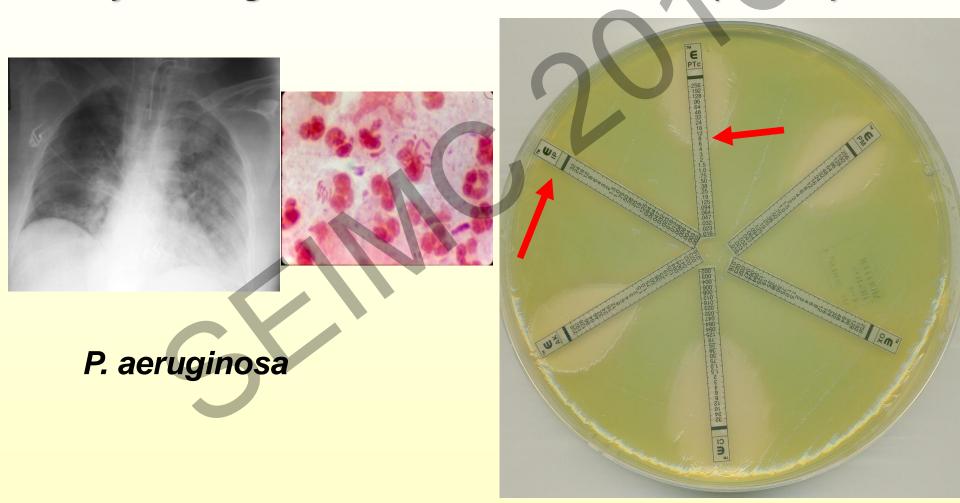
Hemocultivos

- Antifungigrama directo: cuantitativo (Etest). 24 h

Candida albicans

(caspopungina y azoles)

LCR:


Gram, detección Ag, RT-PCR, tinta china, antibiograma

directo (10 min-50 min-24 h):

S. pneumoniae CMI cefotaxima= 1mg/L (18-24 h)

NEUMONÍA: esputo, asp. traqueal, BAS, BAL, cepillo Gram y antibiograma directo mediante E-test (18-24 h)

Antibiograma directo E-test cromogénico: (18-24 h)

- 143 muestras (94 monomicrob; 49 polimicrob)
- 92,7% correlación a 18 h; 100% a 24 h
- Concordancia: 94,9%

Cercenado E, et al. 19th ECCMID, Helsinki 2009

NEUMONÍA: esputo, asp. traqueal, BAS, BAL, cepillo Detección de SARM por RT-PCR (GeneXpert). 55 min

Rapid Detection of *Staphylococcus aureus* in Lower Respiratory Tract Secretions from Patients with Suspected Ventilator-Associated Pneumonia: Evaluation of the Cepheid Xpert MRSA/SA SSTI Assay

TABLE 1 Performance of the Xpert MRSA/SA SSTI assay in 135 endotracheal aspirates compared to quantitative and qualitative cultures

	No. of positive samples/total no. of samples, % (95% confidence interval)"			
Type of culture	Sensitivity	Specificity	PPV	NPV
Quantitative Qualitative	98/99, 99.0 (96.5–100.0) 105/106, 99.1 (96.7–100.0)	26/36, 72.2 (56.2–88.2) 26/29, 89.7 (76.9–100.0)	98/108, 90.7 (84.8–96.7) 105/108, 97.2 (93.7–100.0)	26/27, 96.3 (87.3–100.0) 26/27, 96.3 (87.3–100.0)

Cercenado E, et al. J Clin Microbiol 2012; 50:409

Direct E-Test (AB Biodisk) of Respiratory Samples Improves Antimicrobial Use in Ventilator-Associated Pneumonia

Emilio Bouza,¹ María V. Torres,¹ Celina Radice,¹ Emilia Cercenado,¹ Roberto de Diego,² Carlos Sánchez-Carrillo,¹ and Patricia Muñoz¹

Departments of 'Clinical Microbiology and Infectious Diseases and 'Anesthesia, Hospital General Universitario Gregorio Marañón, Universidad Table 3. Outcome of 250 episodes of ventilator-associated pneumonia (VAP).

	E-test group	Control group	
Outcome	(n = 167)	(n = 83)	Р
Fever, mean days ± SD	4.61 ± 5.06	7.84 ± 6.24	<.01
Antibiotic therapy, mean days ± SD	15.72 ± 9.47	18.92 ± 10.92	.02
Defined daily doses of antibiotic therapy, mean ± SD	31.43 ± 24.47	42.72 ± 34.13	.01
Median cost, in €, of antibiotic per episode (IQR)	666 (236-1360)	984 (437–1601)	.03
Percentage of adequate days of antibiotic therapy	95.22	76.26	<.01
Percentage of adequate defined daily doses of antibiotic therapy	91.28	68.26	<.01
Clostridium difficile-associated diarrhea, no. of patients (%)	3 (1.8)	8 (9.6)	<.01
Median no. of days on mechanical ventilation from VAP diagnosis (IQR)	8 (3–19)	12 (6–21)	.04

NOTE. IQR, interquartile range.

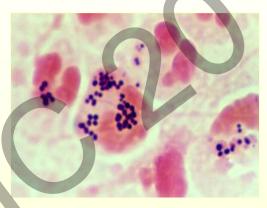
Clin Infect Dis 2007; 44:382

ORINA:

Detección Ag

neumococo, Legionella (15 min.)

Medios cromogénicos Antibiograma directo


Domínguez JA, et al. J Clin Microbiol 1998;36:2718-22

PIEL Y TEJIDOS BLANDOS (heridas, abscesos):

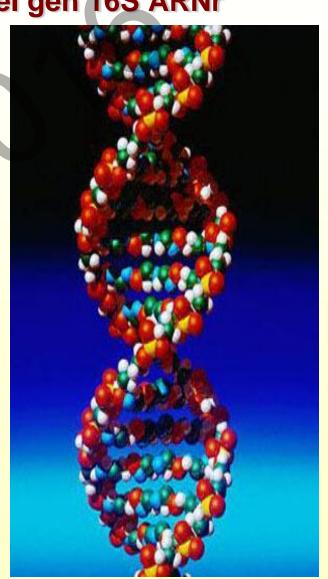
Gram

Detección Ag S. pyogenes, SARM (RT-PCR) (20 min- 1 h)

SARM/SAMS

Diagnóstico molecular: microorganismos de crecimiento lento o difíciles de cultivar

Amplificación con PCR y secuenciación del gen 16S ARNr


(500 bp) en muestras clínicas:

- Primers universales E8F (5'-AGAGTTTGATCCTGGCTCAG-3') E533R (5'-TTACCGCGGCTGCTGGCA-3')

- Purificación producto PCR + secuenciación
- Válvulas cardiacas, prótesis articulares...
- Microorganismos:

Coxiella burnetii
Abiotrophia adjacens
Kingella kingae
Propionibacterium acnes

Miller RJ, et al. BMC Infect Dis 2016; 16:146

Interpretación e informe del antibiograma

- EUCAST/CLSI
- Selección de antimicrobianos a informar
- Adaptar según prevalencia de R local
- Comentarios adicionales

Informes selectivos del antibiograma

Tabla 2 Antibióticos a informar en enterobacterias^{a,b}

Hospital	Atención primaria
Ampicilina ^c	Ampicilina ^c
Amoxicilina/clavulánico	Amoxicilina/clavulánico
Piperacilina/tazobactam	Cefalotina ⁱ
Cefazolina	Cefuroxima
Cefuroxima	Gentamicina
Cefotaxima o ceftriaxonad	Tobramicina
Cefepima ^e	Ciprofloxacino
Aztreonam	Cotrimoxazol ^h
Imipenem ^f	Fosfomicina ^h
Meropenem ^f	Norfloxacino ^h
Doripenem ^f	Nitrofurantoína ^b
Ertapenem ^f	
Gentamicina	
Tobramicina	
Amicacinag	
Ciprofloxacino	
Tigeciclina	, v
Cotrimoxazol ^h	
Fosfomicina ^h	
Norfloxacinoh	
Colistina ^f	

Tabla 5
Antibióticos a informar en especies Staphylococcus.

Hospital	Atención primaria
Penicilina Oxacilina ^a Gentamicina Tobramicina Vancomicina Vancomicina Teicoplanina Daptomicina ^b Levofloxacino ^b Moxifloxacino ^b Eritromicina ^c Clindamicina Cotrimoxazol Linezolid ^b Tigeciclina ^b Rifampicina ^d Ácido fusídico ^e Mupirocina ^e	Penicilina Oxacilina ^a Gentamicina Tobramicina Levofloxacino ^{b,f} Moxifloxacino ^b Eritromicina ^c Clindamicina Cotrimoxazol Nitrofurantoína ^f

Alós JI, Rodríguez-Baño J. EIMC 2010; 28:737 www.eucast.org

Informes selectivos del antibiograma

Selective reporting of antibiotic susceptibility data improves the appropriateness of intended antibiotic prescriptions in urinary tract infections: a case-vignette randomised study

Does laboratory antibiotic susceptibility reporting influence primare care prescribing in UTI and other infections?

- Infomes de sensibilidad a antimicrobianos en cascada
- Mejora significativamente la adecuación del tratamiento
- Se prescriben menos cefalosporinas y menos fluroquinolonas

Coupat C, et al. J Clin Microbiol Infect Dis 2013; 32:627 McNulty CA, et al. JAC 2011; 66:1396 CLSI

EUCAST

Lectura interpretada del antibiograma

Antibiograma enterobacteria:

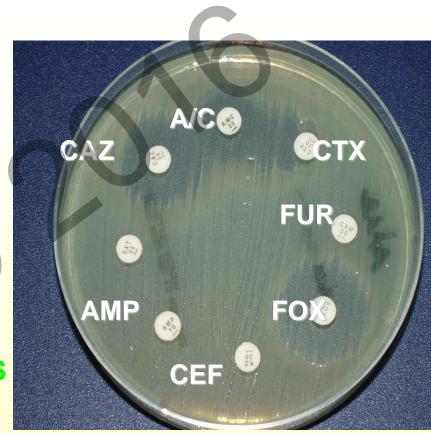
AMPICILINA: >16 R

AMOXICILINA/CLAVULÁNICO: <8/4 S

CEFOXITINA: <8 S

CEFAZOLINA: >32 R

CEFOTAXIMA: 32 R


CEFTAZIDIMA: 1 S

CEFEPIMA: 16

AZTREONAM: >32 R

PIPERACILINA/TAZOBACTAM: <16/4 S

IMIPENEM: <1 S

Informar resistencia a todas las cefalosporinas (CLSI)

Informar CMI de cefalosporinas "as it is" (EUCAST)

CEPA PRODUCTORA DE BLEE

Lectura interpretada del antibiograma

E. coli-BLEE/P. aeruginosa

• E. coli-BLEE (CMI / interpretac.)

AMPICILINA: >16/R

CEFAZOLINA: >16/R

AMOXI/CLAVUL: >16/8/R

CEFOTAXIMA: >32/R

CEFTAZIDIMA: 2/R

CEFEPIMA: 4/R

IMIPENEM: <1/S

· P. aeruginosa (CMI / interpretac.)

AMPICILINA: >16/R

CEFAZOLINA: >16/R

AMOXI/CLAVUL: >16/8/R

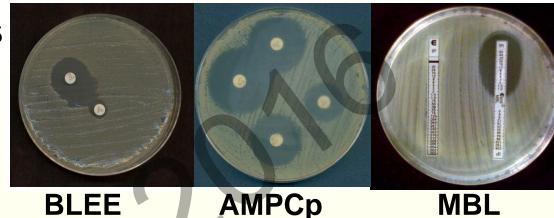
CEFOTAXIMA: >32/R

CEFTAZIDIMA: 2/S

CEFEPIMA: 4/S

IMIPENEM: <1/S

Productor de BLEE


No productor de BLEE

Lectura interpretada del antibiograma

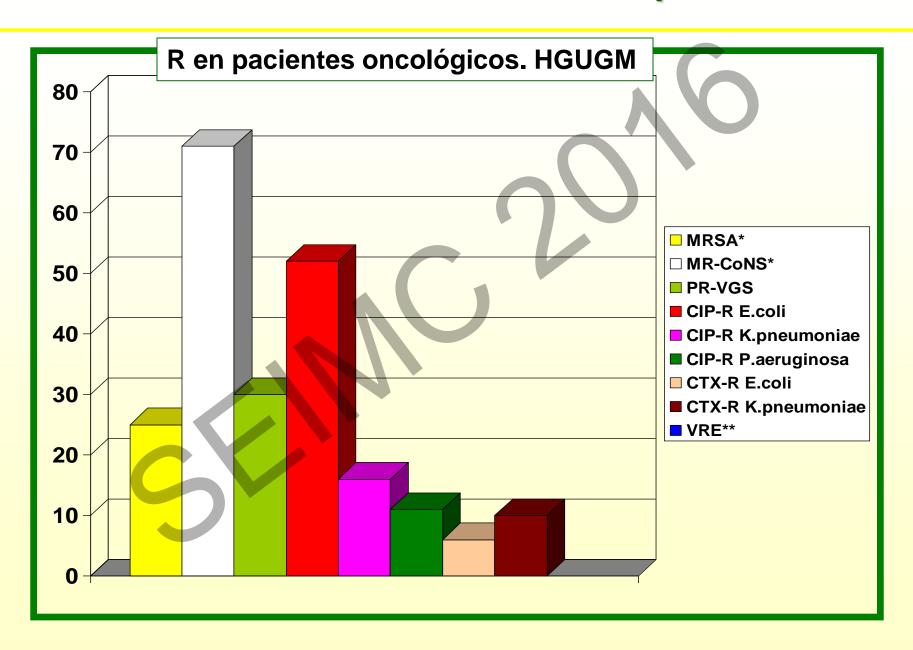
ANTIMICROBIANOS	C.M.I.	REAL	ANTIMICROBIANOS	C.M.I.	REAL
AMOXICILINA	>16	R	AMOXICILINA	>16	R
AMOXICILINA/CLAVULANICO	>16/8	R	AMOXICILINA/CLAVULANICO	>16/8	R
PIPERACILINA/TAZOBACTAM	64/4	1	PIPERACILINA/TAZOBACTAM	>64/4	R
CEFALOTINA	>8	R	CEFALOTINA	>8	R
CEFUROXIMA	>16	R	CEFUROXIMA	>16	R
CEFOXITINA	>16	R	CEFOXITINA	>16	R
CEFTAZIDIMA	>16	R	CEFTAZIDIMA	>16	R
CEFTAZIDIMA/CLAVULANICO	>8/4	-	CEFTAZIDIMA/CLAVULANICO	>8/4	-
CEFOTAXIMA	>8	R	CEFOTAXIMA	>8	R
CEFOTAXIMA/CLAVULANICO	>8/4	-	CEFOTAXIMA/CLAVULANICO	>8/4	-
CEFEPIME	8	R	CEFERIME	>8	R
AZTREONAM	<=1	S	AZTREONAM	>8	R
IMIPENEM	K=1	S	IMIPENEM	>8	R
MEROPENEM	<=2	S	MEROPENEM	>8	R
ERTAPENEM	<=2	S	ERTAPENEM	>4	R
GENTAMICINA	4	S	GENTAMICINA	₹ =2	5
TOBRAMICINA	8	1	TOBRAMICINA	<=4	S
AMIKACINA	<=4	S	AMIKACINA	<=4	S
NITROFURANTOINA	>64	R _	NITROFURANTOINA	<=64	S
ACIDO NALIDIXICO	>16	R	ACIDO NALIDIXICO	<=16	S
CIPROFLOXACINA		275			S
MINOCICLINA	IM-1	K. pne	e <i>umonia</i> e KP	PC-3	1
TRIMETOPRIM/SULFAMETO	enas nr	oductor	as de carbapene	masa 🖯	S
FOSFOMICINA	chas bi	Saucto:	roscomona		R
COLISTINA	<=4	S	COLISTINA	<=4	S

Detección precoz de mecanismos de resistencia

Pruebas fenotípicas

Medios cromogénicos

Métodos colorimétricos


- Métodos moleculares
- MALDI-TOF

Procedimientos SEIMC nº 38, 39, 55 www.eucast.org

Nordmann. Emerg Infect Dis 2012; 18:1503

Dortet L, et al. AAC 2012; 56:6437

Datos de sensibilidad estratificados por servicios

Datos de sensibilidad estratificados por servicios

Comparison of unit-specific and hospital-wide antibiograms: potential implications for selection of empirical antimicrobial therapy.

Informes estratificados por servicios:

- Diferencias UCI/no-UCI
- Permiten tomar decisiones de tratamiento empírico
- Los informes globales pueden enmascarar diferencias Importantes de sensibilidad en diferentes servicios
- Optimización del tratamiento empírico en cada unidad

Vigilancia de la resistencia

PROA: Documento de consenso GEIH-SEIMC-SEFH-SEMPSPH Indicadores recomendados para vigilar la resistencia

tint	as	situ	acio	ones	epi	demi	0	Ógi	cas

Indicador	Microorganismos/antimicrobianos o mecanismos de resistencia
Porcentaje de resistencias de patógenos comunitarios más relevantes	Streptococcus pneumontae (penicilina, cefotaxima, eritromicina, levofloxacino) Staphylococcus aureus (oxacilina, levofloxacina, levofloxacina, trimetoprim-sulfametoxazol, clindamicina, eritromicina, rifampicina) Streptococcus pyogenes (eritromicina, clindamicina) Haemophtlus tnfluenzae (ampicilina) Escherichta colt (ver abajo) Salmonella spp. (ciprofloxacino, cefotaxima)
Porcentaje de resistencias de patógenos nosocomiales más relevantes	S. aureus (véase arriba) Enterococcus faecalts y faectum (ampicilina, alto nivel aminoglucósidos, vancomicina) E. colt (ampicilina, amoxicilina/clavulánico, piperacilina/tazobactam, cefotaxima, ceftazidima, ertapenem, imipenem o meropenem, ciprofloxacino, aminoglucósidos) Klebstella spp. (similar, sin ampicilina)
	Enterobacter spp. (sinular, sin ampicinia) Enterobacter spp. (ceftazidima, cefepima, piperacilina/tazobactam, imipenem o meropenem, ciprofloxacino, aminoglucósidos) Pseudomonas aeruginosa (idem y resistentes a > 3 de las familias anteriores) Actnetobacter baumanntt (imipenem, sulbactam, aminoglucósidos, colistina y resistentes a todos los antimicrobianos

Incidencia nosocomial (casos nuevos por 1,000 estancias o 100 a meticilina Enterococcus spp. resistentes a vancomicina Klebstella y Enterobacter spp. productor de β-lactamasas de espectro extendido y carbapenemasas Pseudomonas aeruginosa productores de metalobetalactamasas Clostridium difficile

Rodríguez-Baño J, EIMC 2012; 30 (1): 22.e1-22.e23

Vigilancia de la resistencia

Gram negativos 2010. Porcentajes de cepas sensibles

ANTIBIOTICOS	E.coli K.pneumoniae		P.mirabilis	E.cloacae	P.aeruginosa	
Beta-lactámicos	•					
Ampicilina	34	0	54	0	0	
Amoxicilina/clavulánico	69	80	90	0	0	
Cefotaxima	87	89	99		0	
Ceftazidima					83	
Cefepima	88	90	99	90	79	
Piperacilina/tazobactam	74	81	94	79	92	
Imipenem	99	99	99	99	68	
Meropenem	99	99	99	99	75	
Ertapenem	99	99	99	99	0	
Aztreonam	80	83	99		66	
Aminoglucósidos	-					
Gentamicina	86	90	87	91	72	
Tobramicina	84	89	90	90	79	
Amicacina	99	99	99	98	92	
Otros						
Ciprofloxacino	66	85	76	91	63	
Colistina	100	100	0	100	100	
Cotrimoxazol	62	83	52	84	0	

COMENTARIOS DE INTERES:

E. coli BLEE (implica resistencia a todas las penicilinas, cefalosporinas, pero NO carbapenemas) está en aumento en los últimos años. Supone un 13% de todos los aislados de E coli.

Aumento de resistencia a quinolonas tanto en enterobacterias como en P. aeruginosa.

La resistencia de *P. aeruginosa* a imipenem y meropenem (32% y 25% respectivamente de todos los aislados de *P. aeruginosa*).también está en aumento.

La resistencia de P. aeruginosa a ceftacidima es menor (17%).

Aunque no figura en la tabla, la resistencia a carbapenemas de *S. maltophilia* es del 100%, mientras que son sensibles de forma general a cotrimoxazol.

La sensibilidad de *A. baumannii* es muy variable y la multirresistencia está asociada a brotes específicos. Todos los aislados son sensibles a colistina.

Gram positivos 2010. Porcentajes de cepas sensibles

ANTIBIOTICOS	S. aureus	S. epidermidis	E. faecalis	S. pneumoniae
Beta-lactámicos:				
Penicilina	7	2		94
Oxacilina	63	16		
Ampicilina			100	
Cefotaxima			0	98
Aminoglucósidos				
Gentamicina	80	44		
Gentamicina alto nivel			50	
Glucopéptidos				
Vancomicina	100	100	99	
Teicoplanina	100	100	99	
Otros				
Eritromicina	60	28		65
Clindamicina	71	26		
Levofloxacino	61	35		96
Cotrimoxazol	99	58	0	
Rifampicina	99	77		
Linezolid	99	95	99	
Mupirocina	81			
Acido Fusídico	97			

Mas del 85% de sensibilidad de las cepas Sensibilidad entre el 50 y 85% de las cepas Menos del 50% de sensibilidad de las cepas

COMENTARIOS DE INTERES:

La resistencia a meticilina de *S. aureus* está estabilizada en un 30%. Implica resistencia a todos los beta-lactámicos incluyendo carbapenemas.

E. faecalis es sensible en el 100% a ampicilina mientras que E. faecium es resistente en un 70%. La resistencia a vancomicina de enterococos es muy baja (1%). La resistencia de alto nivel a gentamicina en E. faecalis y E. faecium implica la ausencia de sinergismo con beta-lactámicos o glucopéptidos en el tratamiento de infecciones graves (bacteriemia, endocarditis y meningitis).

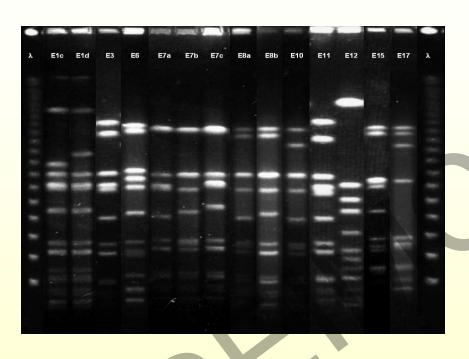
Todos los enterococos son resistentes a todas las cefalosporinas.

Se considera resistencia a cefotaxima de S. pneumoniae en aislados de sangre una CMI ≥ 4 mcg/ml. Sin embargo en LCR se considera sensibilidad intermedia aquellos aislados con una CMI = 1 mcg/ml, lo que obliga a utilizar dosis altas de cefotaxima.

Vigilancia de la resistencia

PROA: Documento de consenso GEIH-SEIMC-SEFH-SEMPSPH Indicadores de resistencia e impacto de la presión antibiótica

Tabla 3
Principales indicadores de resistencia e impacto relativo de la presión antibiótica y los factores epidemiológicos locales


Principales indicadores de resistencia	Impacto esperado en el indicador de la utilización de antibióticos en el hospital
Escherichia coli BLEE+	++
Klebstella pneumontae BLEE+	++/+++
E, colt resistente a fluoroquinolonas	++
Eschertchta colt resistente a amoxicilina/clavulánico	++
Enterobacter resistente a cefalosporinas de 3,ª generación (AmpC)	+++
Enterobacterías productoras de carbapenemasas	++/+++
Pseudomonas aeruginosa resistente (solo) a imipenem	+++
P. aeruginosa multirresistente ²	++/+++
A, baumanntt multirresistente	++/+++
Enterococo resistente a vancomicina	++/+++
Staphylococcus aureus resistente a meticilina	+/++
Clostridium difficile	+++

a Resistente a 3 o más grupos de antibióticos antiseudomónicos,

Rodríguez-Baño J, EIMC 2012; 30 (1): 22.e1-22.e23

Tipado molecular: detección de brotes

PFGE

No relación clonal

Relación clonal: brote

Pruebas rápidas para detectar infecciones víricas

NEUMONIA (virus respiratorios): esputo, asp. traqueal, BAS, BAL, cepillo, exudado nasofaríngeo

- Gripe y VRS (15 minutos)
- Detección de antígenos y PCR

Pruebas rápidas para detectar infecciones víricas

A randomized, controlled trial of the impact of early and rapid diagnosis of viral infections in children brought to an emergency department with febrile respiratory tract illnesses

The effect of rapid respiratory viral diagnostic testing on antibiotic use in a children's hospital

- Reducción del tratamiento antibiótico al alta
- Disminución de tratamientos antibióticos inadecuados
- Disminución de prescripciones

Soni NJ, et al. Journal of Hospital Medicine 2013;8:530 Byington CL, et al. Arch Pediatr Adolesc Med 2002; 156: 1230

Pruebas rápidas: detección patógenos gastrointestinales

DIARREA (virus, Clostridium difficile): heces

- Rotavirus y adenovirus (30 minutos- 1,5 h)

Pruebas rápidas para detectar infecciones bacterianas

 Biomarcadores de infección aguda (procalcitonina)

- Reduce uso de antibióticos
- Util para guiar tratamiento antimicrobiano
- Permite retirar antibióticos
- Ayuda a diferenciar infecciones víricasbacterianas
- Útil en UCI

Soni NJ, et al. Journal of Hospital Medicine 2013;8:530 Jensen JU, et al. Crit Care Med 2011; 39:2048

Marcadores de infección fúngica en pacientes hematológicos

Empirical versus Preemptive Antifungal Therapy for High-Risk, Febrile, Neutropenic Patients:

A Randomized, Controlled Trial

Table 3. Antifungal therapy in the intention-to-treat population (n = 293).

End point	Empirical treatment group	Preemptive treatment group	pª
Antifungal treatment	92/150 (61.3)	56/143 (39.2)	<.001
Reason for starting antifungal treatment			
Isolated fever between day 4 and day 14 after antibacterial treatment initiation	55 (59.8)	1 (1.8)	<.001°
Pneumonia	6 (6.5)	26 (46.4)	
Severe mucositis	8 (8.7)	10 (17.9)	
Isolated fever beyond day 14	11 (12.0)	7 (12.5)	
Septic shock	5 (5.4)	3 (5.4)	
Positive result of galactomannan antigen test	2 (2.2)	3 (5.4)	\
Skin lesion	2 (2.2)	2 (3.6)	
Sinusitis or periorbital inflammation	0 (0.0)	3 (5.4)	
Neurological symptoms	2 (2.2)	0 (0.0)	
Diarrhea	1 (1.1)	1 (1.8)	
Duration of fever before antifungal treatment, median days (IQR)	7 (5-11)	13 (6–17)	<.01
Duration of fever after antifungal treatment, median days (IQR)	9 (4–15)	7 (5-13)	NS
Duration of antifungal treatment, mean days ± SD			
Any antifungal agent	7.0 ± 8.5	4.5 ± 7.3	<.01
High-cost antifungal agents (liposomal AmB, caspofungin, or voriconazole)	3.7 ± 7.6	2.6 ± 5.8	NS
Low-cost antifungal agents (AmB deoxycholate)	3.5 ± 5.2	2.0 ± 4.6	<.01
Cost of antifungal drugs, 2005 €			
Mean ± SD	2252 ± 4050	1475 ± 3329	<.001
Range	0-20,726	0-18,500	
Estimated cost of antifungal drugs if liposomal AmB had been used instead of AmB deoxycholate, 2005 €			<.001
Mean ± SD	4261 ± 4760	2509 ± 4099	
Range	0-21,727	0-18,500	
Length of hospital stay, days			
Mean ± SD	30.3 ± 10.5	30.3 ± 10.2	
Range	11–100	14–90	NS

Cordonnier C, et al. CID 2009; 48:1042

2 grupos: tratamiento antifúngico IFI:

- Con y sin determinación de GM y BDG previa a tratamiento
- Grupo de biomarcadores : disminuyó uso de antifúngicos sin afectar a la mortalidad (39,2% vs 61,3%; p<0,001)

PROA y laboratorio de microbiología

Niveles de antimicrobianos y antifungicos en sangre:

Vancomicina, aminoglucósidos, antifúngicos (azoles)

PROA y laboratorio de microbiología

- El laboratorio de microbiología desempeña un papel crítico en los programas PROA
- Técnicas rápidas ayudan a mejorar los tiempos de diagnóstico de las enfermedades infecciosas y a optimizar el tratamiento antimicrobiano
- Métodos que ayudan a la detección precoz de mecanismos de R a antimicrobianos y a instaurar tratamiento antimicrobiano precoz y adecuado
- Vigilancia de la resistencia que ayuda a establecer tratamientos empíricos adecuados
- Tipado molecular que ayuda a detectar brotes

