

Hospital Universitario Salud Madrid 12 de Octubre

Impacto de la respuesta inmune y de la interacción huésped patógeno en el pronóstico de la candidemia

Mario FERNÁNDEZ RUIZ

Unidad de Enfermedades Infecciosas Hospital Universitario "12 de Octubre" Instituto de Investigación Hospital "12 de Octubre", Madrid

Declaración de conflictos de intereses

En los últimos 24 meses he recibido honorarios por impartir charlas científicas en nombre de

- Astellas Pharma
- Gillead Sciences
- Roche
- Alere Healthcare

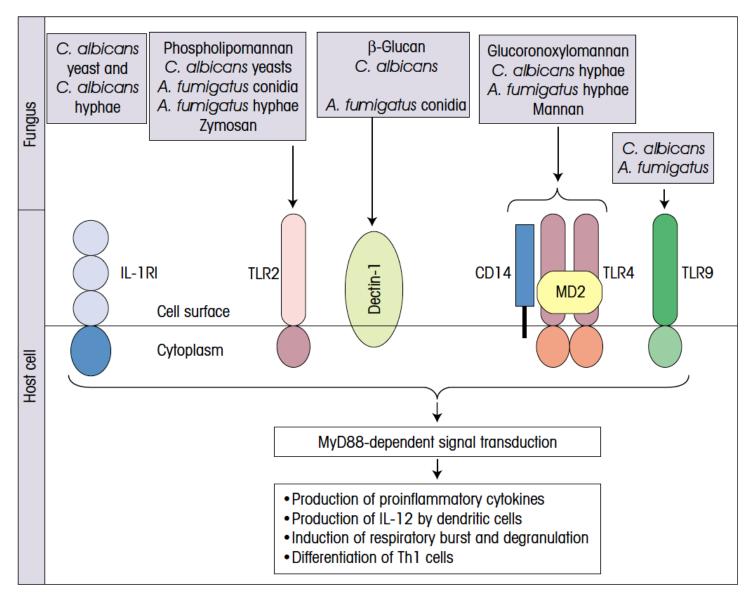
Estudios de derivación de escalas predictivas de candidiasis invasiva en pacientes críticos

					Name of the study	PPV %		
Table 2: Various developmental studies of risk prediction mo								
					Pittet et al.	66		
						100		
					Dupont et al.	67		
					Dapone et al.	0,		
					Michalopoulos et al.	100		
					i incharopouros et un	, 00		
					Dankitan at al	NA		
					Paphitou et al.			
					Leon et al.	NA		
					Ostrosky et al.	9		
					Ostrosky et al.	10		
					Shorr et al.	NA		

	NA	NA	NA	NA				

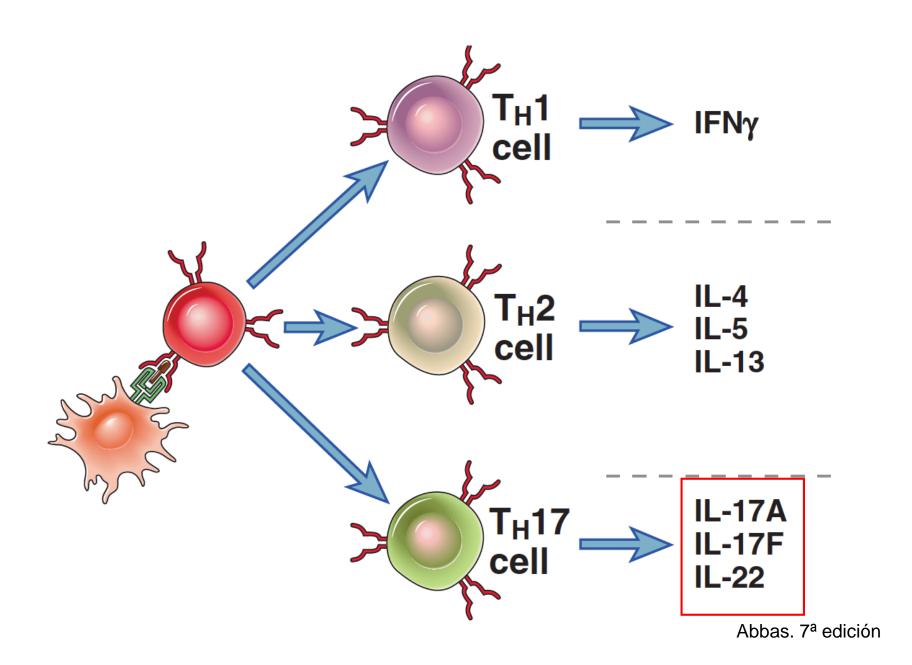
Indian J Crit Care Med 2014;18:682-8

Estudios de validación de escalas predictivas de candidiasis invasiva en pacientes críticos

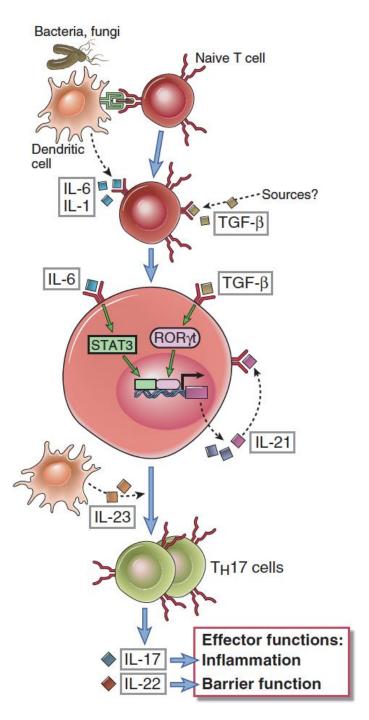

					Name of risk prediction model/rule	PPV
Table 3: Valid	dation	studies of var	ious risk pro	ediction i	Candida score≥3	13.8
Name of the						
					Candida score>3	23.8
León et al.					Ostrosky original without CCI*	5.3
					Ostrosky original with CCI*	23.8
					Ostrosky revised without CCI*	4
					Ostrosky revised with CCI*	17
					Paphitou I	4.8
					Paphitou 2	5.4
					Ostrosky original	4.1
					Osti Osky i Cviscu	4.2
					NMC	4.7
					Candia score≥3	39
					Ostrosky original (modified)	21
					CI>0.5	43

		NA
4.2		
21		

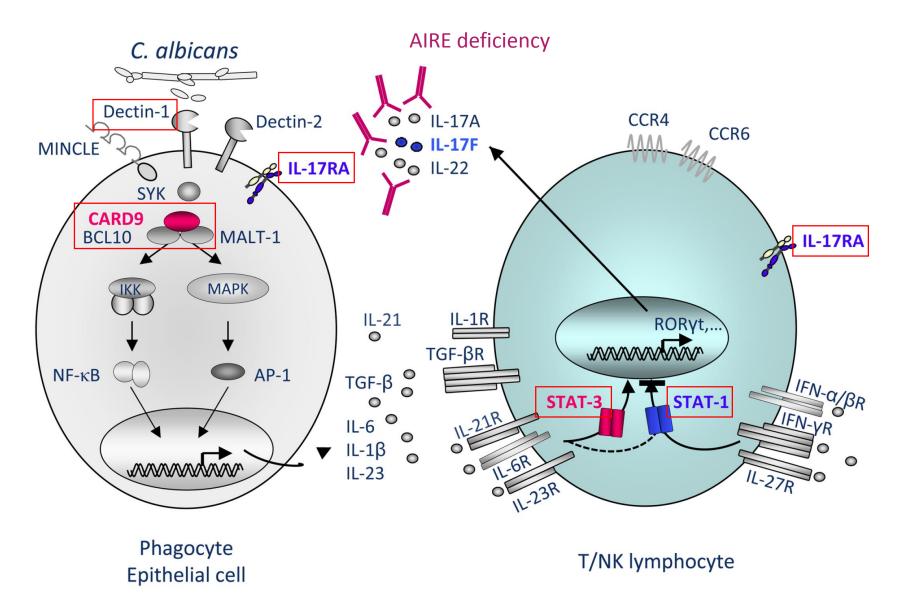
Indian J Crit Care Med 2014;18:682-8



A igualdad de factores de riesgo para candidiasis invasiva, ¿existe una base inmunológica en la susceptibilidad individual?



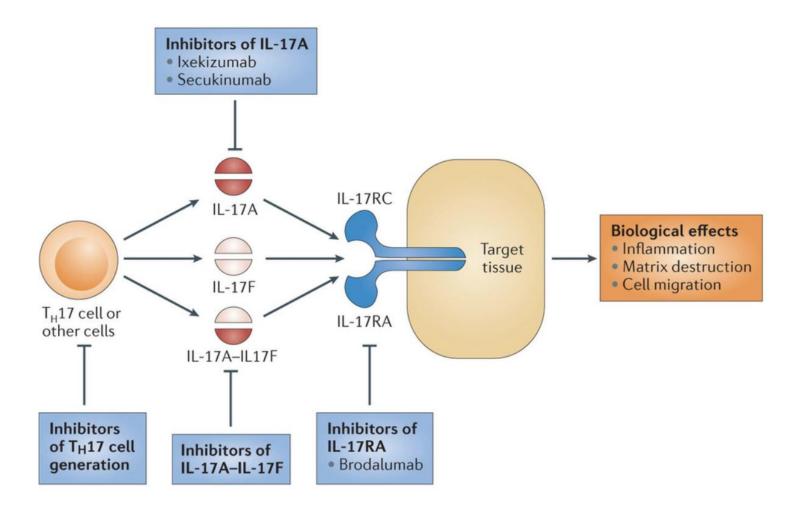
Roitt. 12ª edición


Linfocitos Th17

Abbas. 7ª edición

Candidiasis mucocutánea crónica

Curr Opin Allergy Clin Immunol 2012;12:616–22


Candidiasis mucocutánea crónica

IL-17-axis-targeted agents

La mayor parte de las infecciones por Candida en pacientes que reciben fármacos dirigidos frente al eje IL-17 son superficiales

Treatment	Total	Mild to moder	ate					Severe	Overall
	no.	Candida infec	tions (%)		Candida	(%)			
	patients							infections (%)	
	included	Vulvovaginal /genital	Oral	Skin	Esophageal	Nail	Unknown infection site		Total
Secukinumab	4,277	7 (0.2%)	15 (0.4%)	2 (0.05%)	2 (0.05%)	0 (0%)	56 (1.3%)	1 (0.02%)	83 (2.1%)
Brodalumab	4,431	0 (0%)	7 (0.2%)	0 (0%)	1 (0.02%)	0 (0%)	169 (3.8%)	0 (0%)	177 (4.0%)
Ixekizumab	4,113	40 (1.0%)	63 (1.5%)	20 (0.5%)	2 (0.05%)	1 (0.025%)	9 (0.2%)	0 (0%)	135 (3.3%)
Etanercept	1,065	4 (0.4%)	1 (0.1%)	0 (0%)	0 (0%)	0 (0%)	4 (0.4%)	0 (0%)	9 (0.8%)
Ustekinumab	613	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	14 (2.3%)	0 (0%)	14 (2.3%)
Placebo	2,323	3 (0.1%)	(0.09%)	1 (0.04%)	0 (0%)	0 (0%)	1 (0.04%)	0 (0%)	7 (0.3%)

Br J Dermatol 2016 Aug 31 [epub ahead of print]

CARD9 (caspase recruitment domain-containing protein 9) deficiency

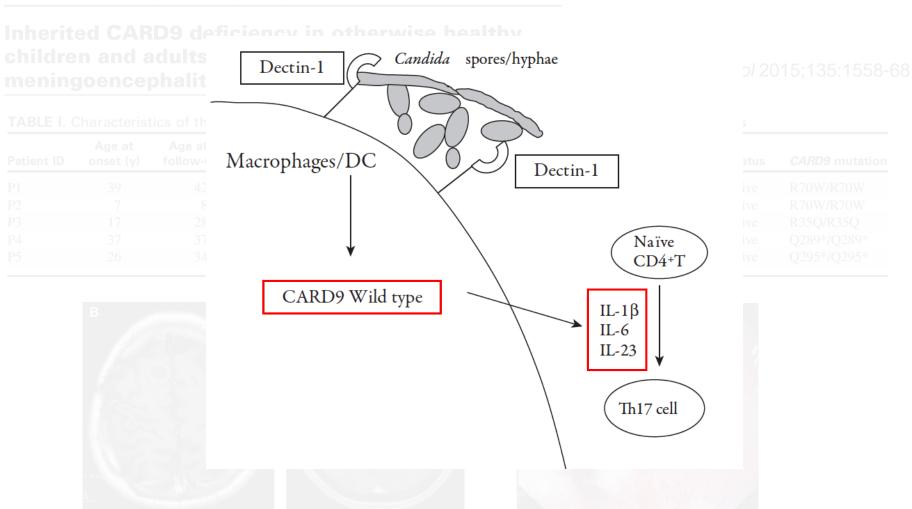

Immune deficiencies, infection, and systemic immune disorders

Inherited CARD9 deficiency in otherwise healthy children and adults with *Candida* species-induced meningoencephalitis, colitis, or both

J Allergy Clin Immunol 2015;135:1558-68

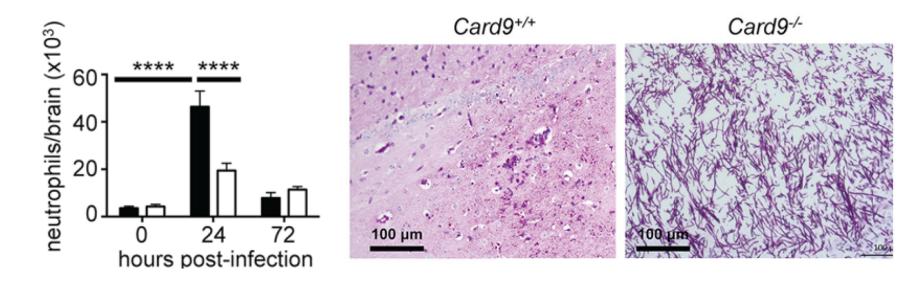
TABLE I. Characteristics of the 5 patients with invasive fungal infection and homozygous CARD9 mutations

Patient ID	Age at onset (y)	Age at last follow-up (y)	Sex	Country of origin	Organ involvement	Associated CMC	Fungus	Status	CARD9 mutation
P1	39	42	F	Turkey	CNS	Yes	C albicans	Alive	R70W/R70W
P2	7	8	F	Turkey	CNS	Yes	C albicans	Alive	R70W/R70W
P3	17	28	M	Iran	CNS, sinus, digestive tract	No	C glabrata	Alive	R35Q/R35Q
P4	37	37	F	Morocco	CNS	Yes	C albicans	Alive	Q289*/Q289*
P5	26	34	M	Pakistan	Digestive tract	No	C albicans	Alive	Q295*/Q295*



CARD9 (caspase recruitment domain-containing protein 9) deficiency

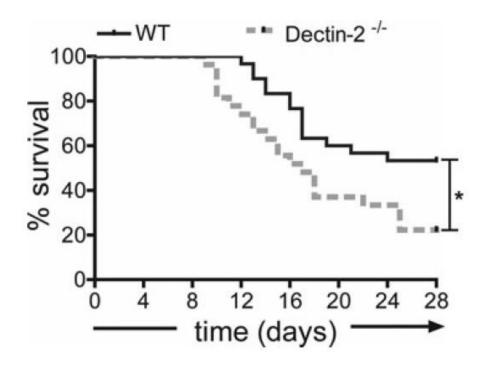
Immune deficiencies, infection, and systemic immune disorders



CARD9-Dependent Neutrophil Recruitment Protects against Fungal Invasion of the Central Nervous System

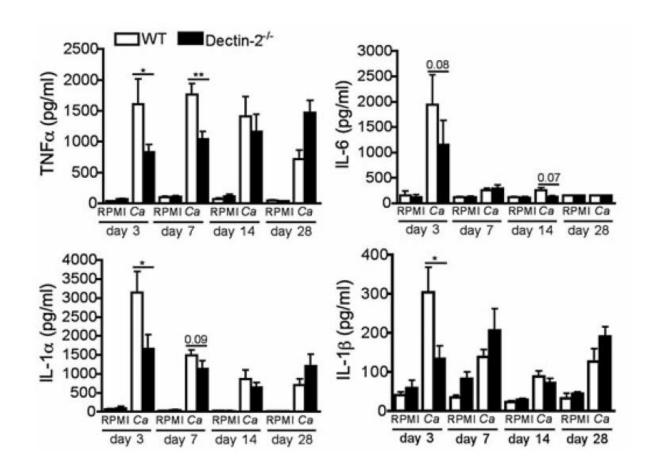
PLoS Pathog 2015;11:e1005293

Rebecca A. Drummond^{1®}, Amanda L. Collar^{1®}, Muthulekha Swamydas¹, Carlos A. Rodriguez², Jean K. Lim², Laura M. Mendez³, Danielle L. Fink³, Amy P. Hsu⁴, Bing Zhai⁵, Hatice Karauzum⁶, Constantinos M. Mikelis⁷, Stacey R. Rose¹, Elise M. N. Ferre¹, Lynne Yockey¹, Kimberly Lemberg⁸, Hye Sun Kuehn⁸, Sergio D. Rosenzweig⁸, Xin Lin⁹, Prashant Chittiboina¹⁰, Sandip K. Datta⁶, Thomas H. Belhorn¹¹, Eric T. Weimer¹², Michelle L. Hernandez¹³, Tobias M. Hohl⁵, Douglas B. Kuhns³, Michail S. Lionakis¹*

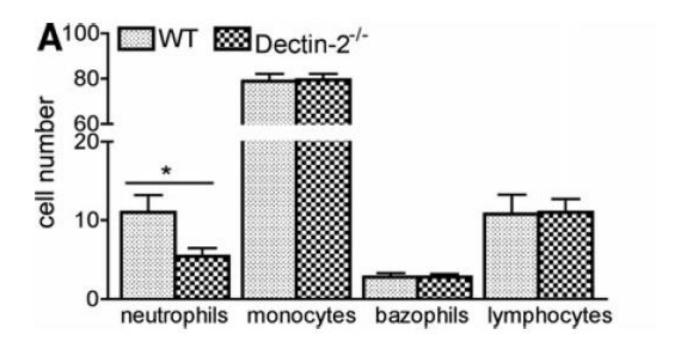


The Role of Dectin-2 for Host Defense Against Disseminated Candidiasis

Daniela C. Ifrim, Jessica Quintin, Flavie Courjol, Ineke Verschueren, J. Han van Krieken, Frank Koentgen, Chantal Fradin, Neil A.R. Gow, Leo A.B. Joosten, Jos W.M. van der Meer, Frank van de Veerdonk, and Mihai G. Netea


J Interferon Cytokine Res. 2016;36:267-76

Ratones K/O para dectina-2 y WT infectados con C. albicans

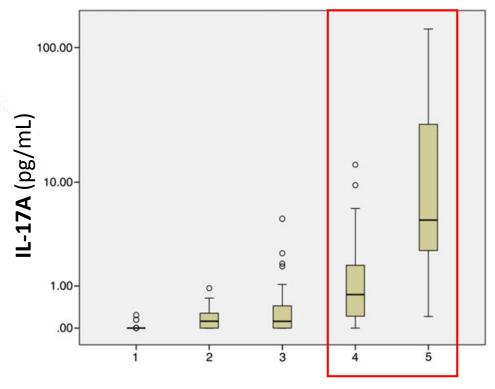

Producción de citoquinas pro-inflamatorias en macrófagos estimulados con C. albicans en ratones K/O para dectina-2 y WT

J Interferon Cytokine Res. 2016;36:267-76

Rdclutamiento de células inflamatorias en el peritoneo de ratones K/O para dectina-2 y WT infectados con C. albicans

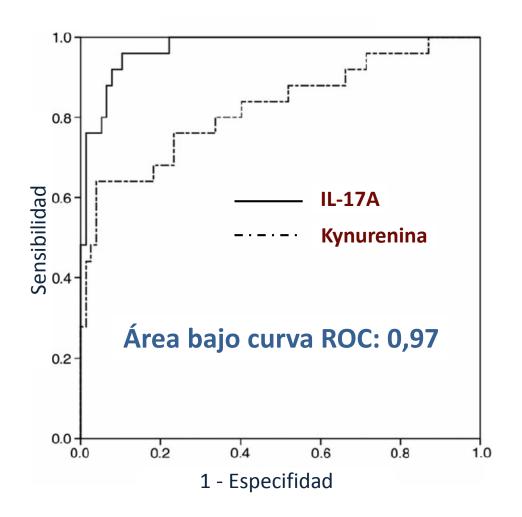
J Interferon Cytokine Res. 2016;36:267-76

Respuesta Th17 en la infección por Candida


Elevated Levels of Interleukin 17A and Kynurenine in Candidemic Patients, Compared With Levels in Noncandidemic Patients in the Intensive Care Unit and Those in Healthy Controls

J Infect Dis 2015;211:445-51

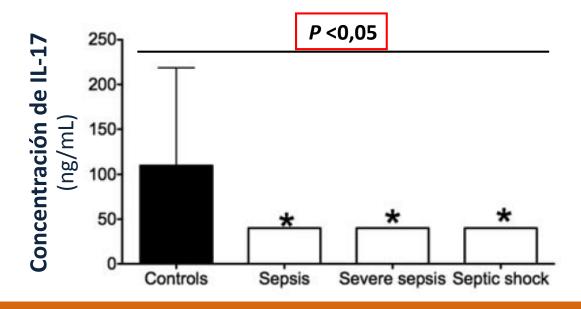
Robert Krause,¹ Ines Zollner-Schwetz,¹ Helmut J. F. Salzer,^{1,7} Thomas Valentin,¹ Jasmin Rabensteiner,¹ Florian Prüller,² Reinhard Raggam,² Andreas Meinitzer,² Jürgen Prattes,¹ Beate Rinner,³ Heimo Strohmaier,³ Franz Quehenberger,⁴ Dirk Strunk,⁶ Katharina Heidrich,⁵ Walter Buzina,⁵ and Martin Hoenigl¹



- Grupo 2: pacientes en UCI
- Grupo 3: pacientes en UCI con neumoni
 - Los niveles de IL-17A están significativamente elevados en pacientes con candidemia
 - citoquinas en suero

Los niveles de IL-17A permiten diferenciar entre pacientes con o sin candidemia

J Infect Dis 2015;211:445-51


Deficient Candida-Specific T-Helper 17 Response During Sepsis

J Infect Dis 2012;206:1798-802

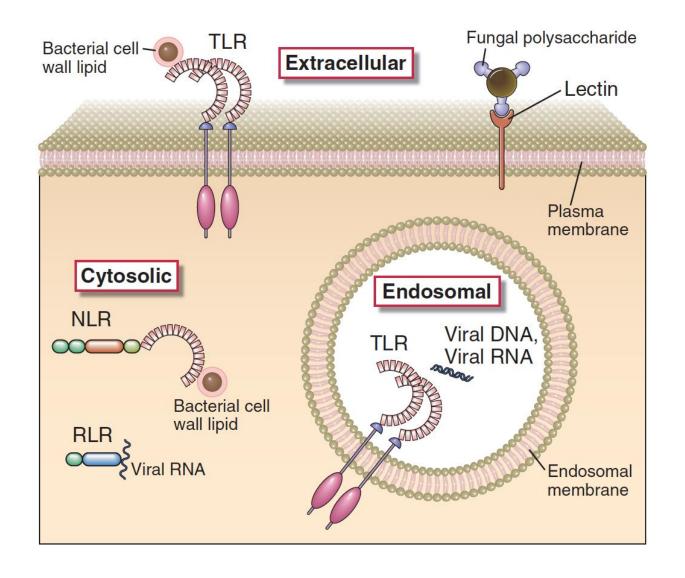
Frank L. van de Veerdonk,¹ Maria Mouktaroudi,³ Bart P. Ramakers,² Aikaterini Pistiki,³ Peter Pickkers,² Jos W. M. van der Meer,¹ Mihai G. Netea,¹ and Evangelos J. Giamarellos-Bourboulis³

- Modelo experimental de endotoxinemia (inyección de LPS) en voluntarios sanos
- Pacientes ingresados en UCI con sepsis, sepsis grave o SS
- Estímulo de PBMCs con conidias o pseudohifas de C. albicans y medida de IL-17 e IL-18

Expresión de IL-17 en PBMCs estimuladas en voluntarios sanos y pacientes con sepsis

Deficient Candida-Specific T-Helper 17 Response During Sepsis

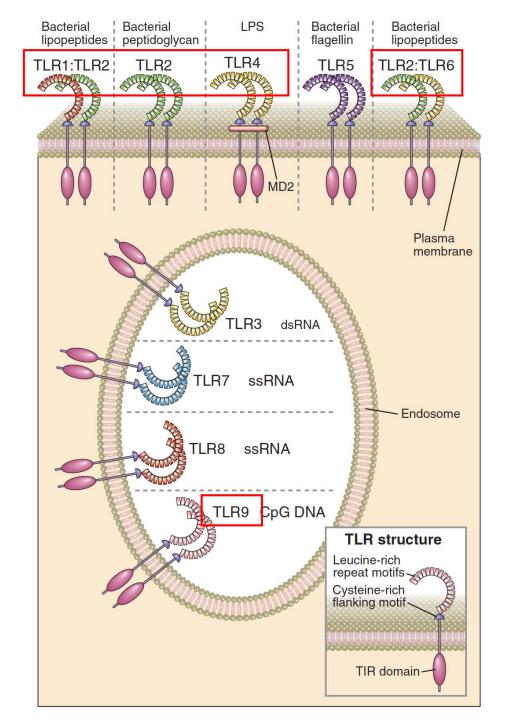
J Infect Dis 2012;206:1798-802


Expresión de IL-1ß e IL-17 en PBMCs estimuladas en voluntarios sanos tras la inyección de LPS

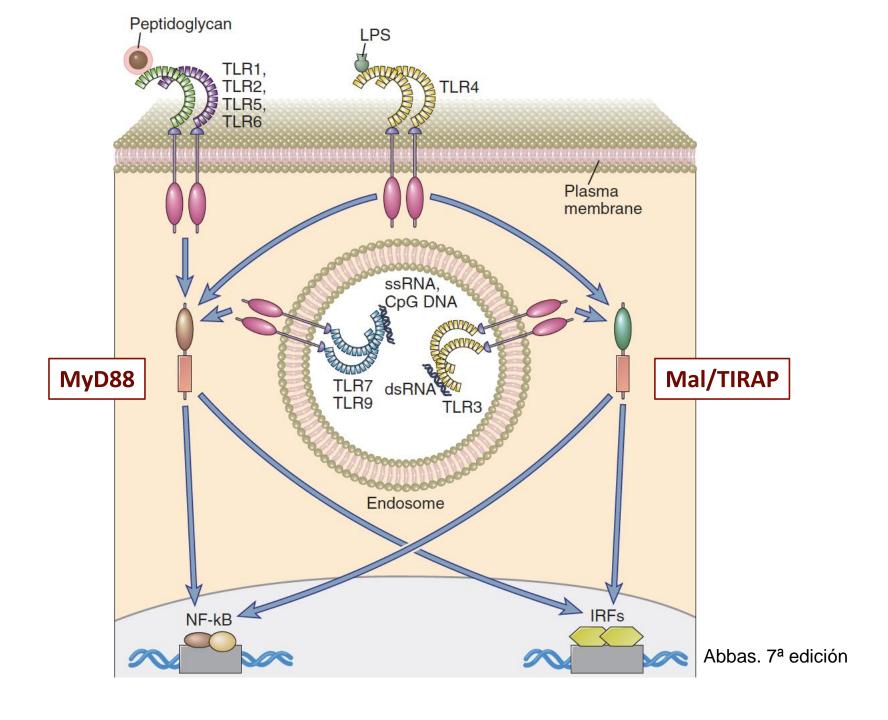
La respuesta Th17 es defectuosa en pacientes con sepsis por Gramnegativos o en el modelo experimental humano de endotoxinemia

Papel de los receptores de reconocimiento de patrones (PRPs)

Abbas. 7ª edición



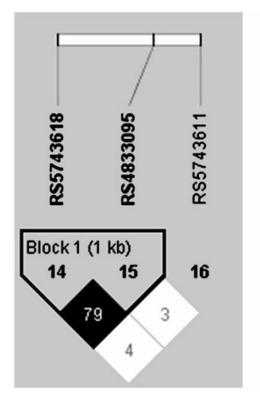
Toll-like Receptor 1 Polymorphisms Increase Susceptibility to Candidemia Jinfect Dis 2012;205:934-43


Theo S. Plantinga,^{1,2,a} Melissa D. Johnson,^{5,6,a} William K. Scott,⁷ Esther van de Vosse,³ Digna R. Velez Edwards,⁸ P. Brian Smith,⁵ Barbara D. Alexander,⁵ John C. Yang,⁹ Dennis Kremer,⁴ Gregory M. Laird,⁵ Marije Oosting,^{1,2} Leo A. B. Joosten,^{1,2} Jos W. M. van der Meer,^{1,2} Jaap T. van Dissel,³ Thomas J. Walsh,¹⁰ John R. Perfect,⁵ Bart Jan Kullberg,^{1,2} and Mihai G. Netea^{1,2}

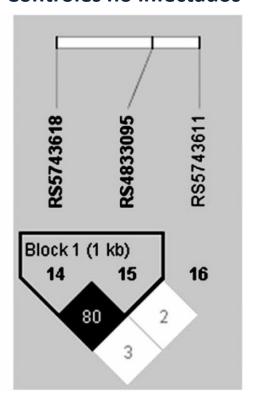
Gene	SNP ID	Gene Region	Amino Acid Change
MYD88	rs4988453	Promoter	
	rs6853	3' UTR	•••
TIRAP	rs595022	Intron 1	
	rs8177374	Exon 5	Nonsynonymous S180L
TLR1	rs4833095	Exon 4	Nonsynonymous S248N
	rs5743611	Exon 4	Nonsynonymous R80T
	rs5743618	Exon 4	Nonsynonymous I602S
TLR2	rs5743704	Exon 3	Nonsynonymous P631H
	rs5743708	Exon 3	Nonsynonymous R753Q
TLR4	rs4986790	Exon 3	Nonsynonymous D299G
	rs4986791	Exon 3	Nonsynonymous T399I
TLR6	rs5743810	Exon 1	Nonsynonymous S249P
TLR9	rs5743836	Promoter	

Abbas. 7ª edición

Tres SNPs en TLR1 se asocian a mayor riesgo de candidemia en pacientes caucásicos


Whites (245 Infe	ected, 263 Noninfected) N	MAF			P Value	OR (95% CI) ^b
TLR1 Ra80T	GG ^a	GC	CC		.02	1.82 (1.12–2.98)
Noninfected	88.2%	9.9%	1.91%	0.068		
Infected	80.2%	18.9%	0.86%	0.103		
TLR1 S248Na	GG	GA	AAa		.04	0.68 (.4796)
Noninfected	5.3%	41.8%	52.9%	0.262		
Infected	7.2%	30.1%	62.7%	0.223		
TLR1 602Sª	Π	TG	GG ^a		.02	0.69 (.4980)
Noninfected	7.6%	44.7%	47.7%	0.300		
Infected	10.2%	33.1%	56.8%	0.268		
African America	ns (93 infected, 88 noninf	ected) MAF			P value	OR (95% CI) ^c
TLR1 Ra80T	GG ^a	GC	CC		.62	2.92 (.23-155.70)
Noninfected	98.9%	1.1%	0%	0.006		
Infected	96.8%	3.2%	0%	0.016		
TLR1 Sa248N	GG	GA	AA ^a		.09	3.86 (.71-39.15)
Noninfected	63.6%	28.4%	7.95%	0.222		
Infected	69.9%	27.9%	2.15%	0.161		
TLR1 la602S	Π	TG	GG ^a		.60	3.12 (.25–166.70)
Noninfected	76.1%	20.5%	3.4%	0.137		
Infected	80.2%	18.7%	1.1%	0.105		

J Infect Dis 2012;205:934-43



Desequilibrio de ligamiento en la tranmisión de esos tres SNPs en TLR1

Pacientes candidémicos

Controles no infectados

J Infect Dis 2012;205:934-43

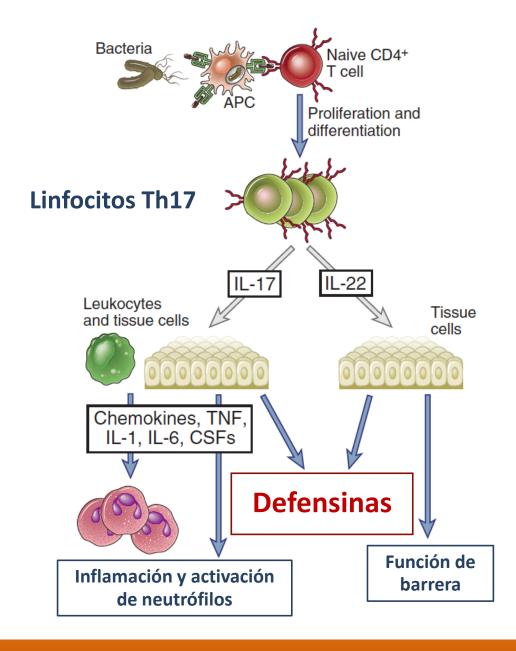
Expresión de citoquinas proinflamatorias en PBMCs estimuladas en función de la presencia de distintos haplotipos en el gen TLR1

Ciertos polimorfimos en el gen TLR1 aumentan la susceptibilidad a la candidemia y se asocian a una alteración funcional en la producción de citoquinas pro-inflamatorias

Haplotipos gen *TLR1*

Haplotipos gen *TLR1*

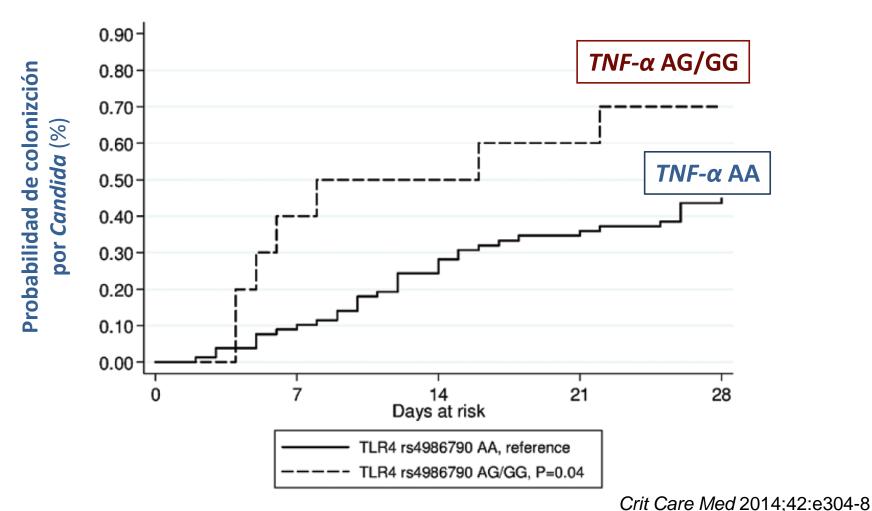
Citoquinas pro-inflamatorias y péptidos antimicrobianos


Polymorphisms in *Tumor Necrosis Factor-\alpha* Increase Susceptibility to Intra-Abdominal *Candida* Infection in High-Risk Surgical ICU Patients*

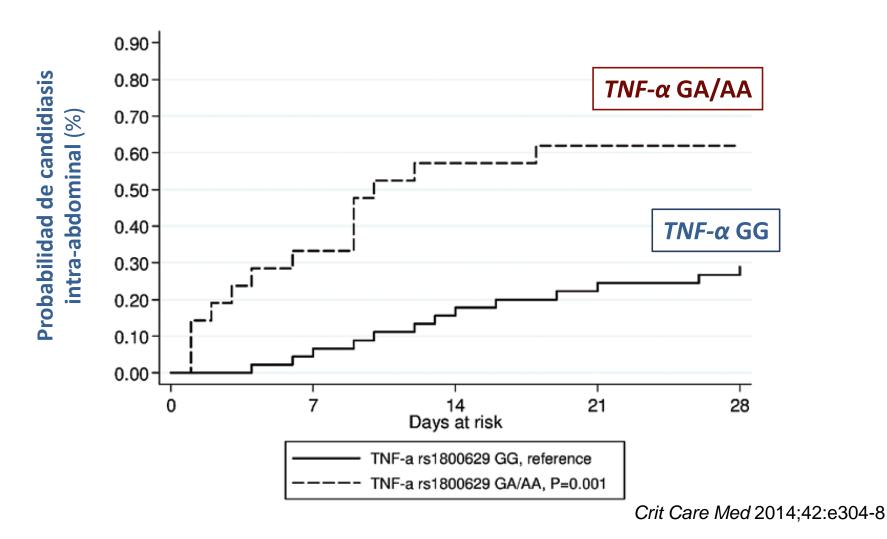
Crit Care Med 2014;42:e304-8

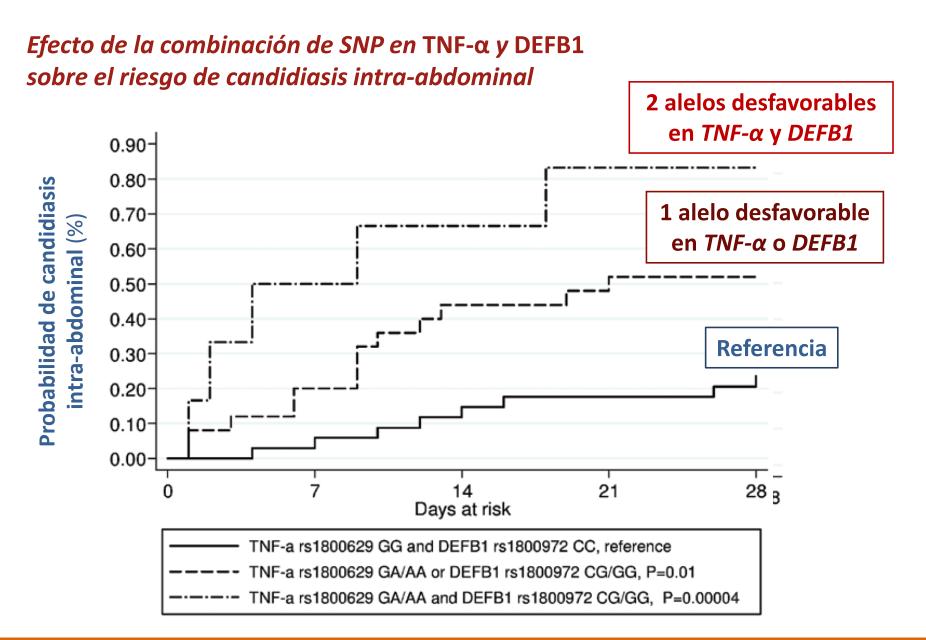
Agnieszka Wójtowicz, PhD¹; Frederic Tissot, MD¹; Frederic Lamoth, MD¹; Christina Orasch, MD¹²; Philippe Eggimann, MD³; Martin Siegemund, MD⁴; Stephan Zimmerli, MD⁵; Ursula Maria Flueckiger, MD²,6; Jacques Bille, MD⁻; Thierry Calandra, MD, PhD¹; Oscar Marchetti, MD¹; Pierre-Yves Bochud, MD¹; and the Fungal Infection Network of Switzerland (FUNGINOS)

	Multivariate Ana	lysis
Gene rs Number	Hazard Ratio (95% CI)	Cox p ^a
Candida colonization ^b (n = 89)		
Toll-like receptor 4 <i>rs4986790</i> , AA/AG vs GG	3.39 (1.45-7.93)	0.005
Surfactant protein A2 rs17886395, CC/GC vs GG	1.87 (0.93–3.74)	0.08
Male sex	1.27 (0.67-2.43)	0.5
Age (yr)	0.99 (0.97-1.01)	0.4
Intra-abdominal candidiasis c ($n = 69$)		
Model 1		
TNF-α <i>rs1800629</i> , GA/AA vs GG	4.31 (1.85-10.1)	0.0007
DEFB1 <i>rs1800972</i> , GG/CG vs CC	3.21 (1.36–7.59)	0.008
SAPS II score ^d	2.41 (1.01-5.75)	0.05



Abbas. 7ª edición


El SNP rs49866790 en TNF-α se asocia a mayor riesgo de colonización "pesada" por Candida spp. (índice de Pittet corregido >0,4)



El SNP rs1800629 en TNF-α se asocia a mayor riesgo de candidiasis intra-abdominal

Respuesta celular T CD4 y CD8

CrossMark

T cells from patients with *Candida* sepsis display a suppressive immunophenotype

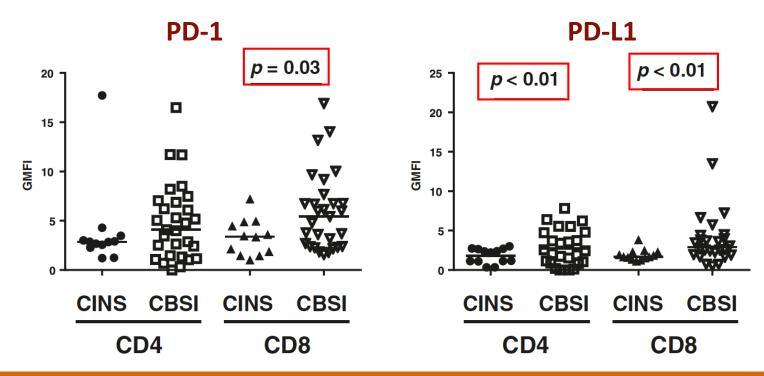
Crit Care 2016;20:15.

Andrej Spec^{1†}, Yuichiro Shindo^{2†}, Carey-Ann D. Burnham³, Strother Wilson², Enyo A. Ablordeppey², Evan R. Beiter², Katherine Chang², Anne M. Drewry² and Richard S. Hotchkiss^{1,2,4*}

- 27 pacientes con candidemia y 16 controles ingresados en UCI
- Citometría de flujo en PBMCs (muestra obtenida al cabo de 24-48 horas desde el primer HC)

Table 1 Baseline characteristics of patients with *Candida* bloodstream infections and critically ill control patients

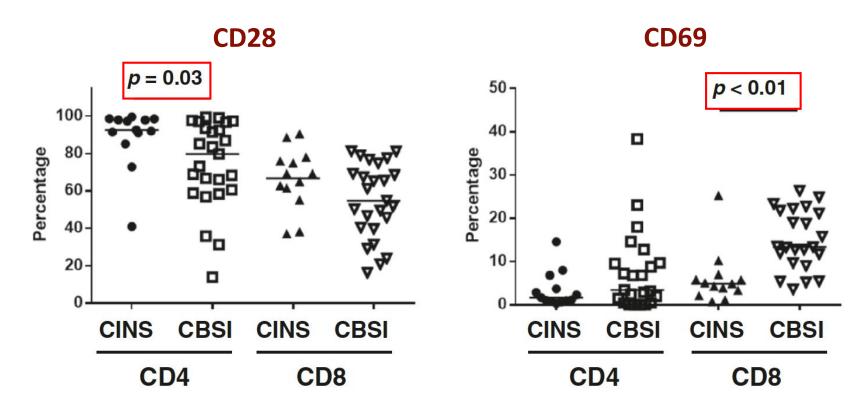
· ·			
	CBSI N = 27 (%)	Critically ill, non-septic patients N = 16 (%)	p value
Mean age (±SD), years	56.9 (23.4)	58.9 (18.1)	0.19
Male gender (%)	14 (51.9)	10 (62.5)	0.46
APACHE II score (±SD)*	11.61 (6.7)	8.69 (4.0)	0.11
SOFA score (±SD)*	4.7 (4.2)	2.6 (1.8)	0.06
White blood cell count (±SD), thousand/mm ³	11.7 (5.8)	9.9 (3.5)	0.25
Absolute lymphocyte count (±SD), thousand/mm ³	1.13 (0.99)	0.61 (0.49)	0.02
Absolute neutrophil count (±SD), thousand/mm ³	7.23 (5.76)	6.43 (5.32)	0.77
Heart rate (±SD), beats/min	102.2 (19.9)	109.5 (17.0)	0.23
Respiratory rate (±SD), breaths/min	23.19 (5.6)	24.4 (4.1)	0.46
Baseline creatinine (±SD), mg/dl	1.46 (1.62)	1.1 (0.85)	0.4
90-day mortality (%)	6 (22.2)	3 (18.8)	0.79


T cells from patients with *Candida* sepsis display a suppressive immunophenotype

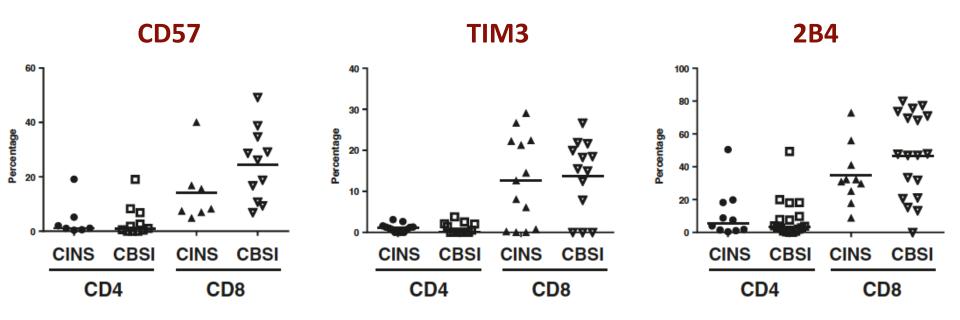
Crit Care 2016;20:15.

Andrej Spec^{1†}, Yuichiro Shindo^{2†}, Carey-Ann D. Burnham³, Strother Wilson², Enyo A. Ablordeppey², Evan R. Beiter², Katherine Chang², Anne M. Drewry² and Richard S. Hotchkiss^{1,2,4*}

- 27 pacientes con candidemia y 16 controles ingresados en UCI
- Citometría de flujo en PBMCs (muestra obtenida al cabo de 24-48 horas desde el primer HC)


CrossMark

Open Access


T cells from patients with *Candida* sepsis display a suppressive immunophenotype

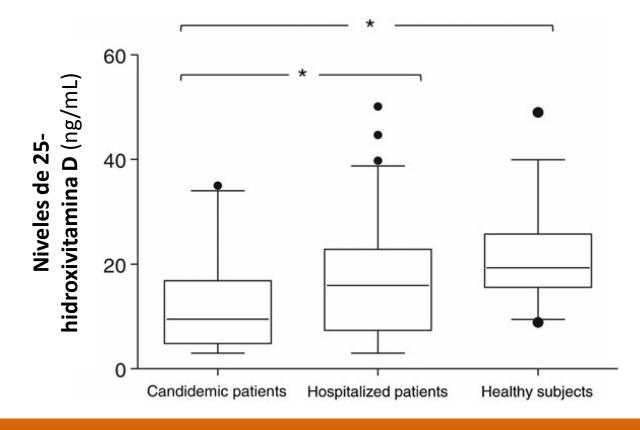
Crit Care 2016;20:15.

Andrej Spec^{1†}, Yuichiro Shindo^{2†}, Carey-Ann D. Burnham³, Strother Wilson², Enyo A. Ablordeppey², Evan R. Beiter², Katherine Chang², Anne M. Drewry² and Richard S. Hotchkiss^{1,2,4*}

En comparación con otros pacientes críticos, los pacientes con candidemia presentan un inmunofenotipo T CD4 y CD8 "exhausto"

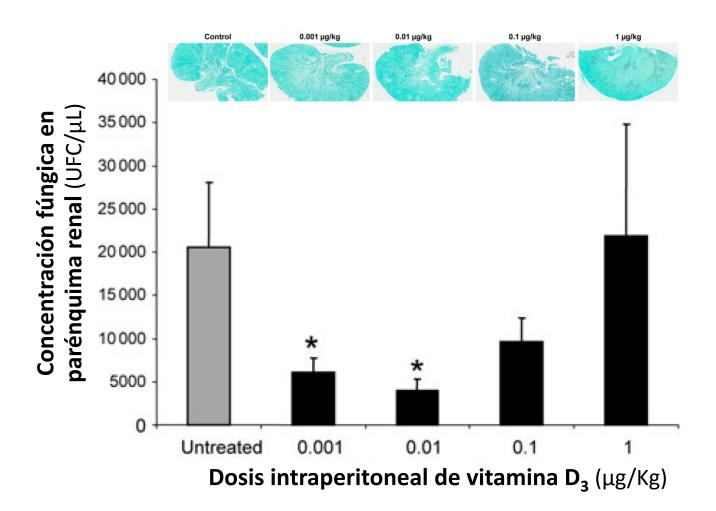
(disminución de receptores de co-estimulación positiva [CD28], aumento de receptores de co-estimulación negativa [PD-1 y PD-L1] y de moléculas de activación [CD69])

Papel inmunomodulador de la vitamina D

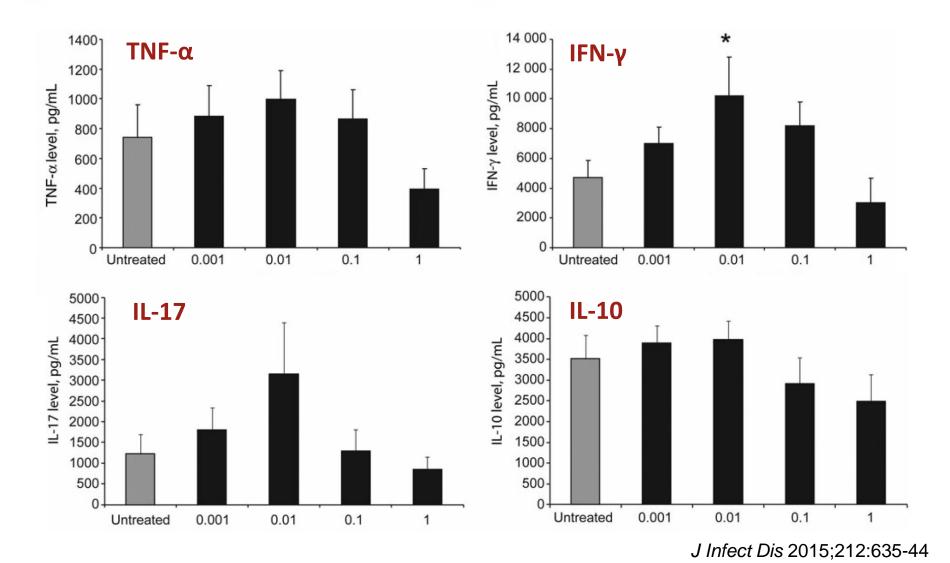


Bimodal Influence of Vitamin D in Host Response to Systemic *Candida* Infection— Vitamin D Dose Matters

J Infect Dis 2015;212:635-44


Joan Hui Juan Lim,^{1,a} Sharada Ravikumar,^{1,a} Yan-Ming Wang,⁷ Thomas Paulraj Thamboo,⁴ Lizhen Ong,⁵ Jinmiao Chen,⁸ Jessamine Geraldine Goh,¹ Sen Hee Tay,² Lufei Chengchen,⁹ Mar Soe Win,^{1,9} Winnie Leong,¹ Titus Lau,³ Roger Foo,¹⁰ Haris Mirza,¹¹ Kevin Shyong Wei Tan,¹¹ Sunil Sethi,⁵ Ai Leng Khoo,¹³ Wee Joo Chng,^{6,9,12} Motomi Osato,⁹ Mihai G. Netea,¹⁴ Yue Wang,⁷ and Louis Yi Ann Chai¹

- Pacientes con candidemia
- Controles hospitalizados
- Controles sanos


• Modelo murino tratado con vitamina D₃

J Infect Dis 2015;212:635-44

• Expresión de citoquinas en esplenocitos estimulados con Candida spp.

La vitamina D ejerce un papel bimodal sobre la respuesta frente a Candida (polarización Th17, expresión de STAT3, respuesta de citoquinas pro-inflamatorias): dosis bajas son beneficiosas, dosis elevadas son deletéreas

Conclusiones

- Los modelos clínicos de predicción de candidiasis son imperfectos: ¿papel de la respuesta inmune del huésped?
- Ejemplos de la relevancia del eje Th17-IL-17: candidiasis mucocutánea crónica, nuevos fármacos biológicos
- Deficiencia de CARD9 y riesgo de candidiasis invasiva (SNC)
- Polimorfimos en los genes que codifican TLRs, citoquinas proinflamatorias y péptidos antimicrobianos
- Fenotipo exhausto CD4 y CD8 durante la candidemia
- Papel bimodal de la vitamina D según su concentración

Propuesta de investigación...

incluir parámetros de respuesta inmune e interacción huésped-patógeno en futuros estudios en candidemia

¿Estudio Inmuno-CANDIPOP 2?

Muchas gracias

mario_fdezruiz@yahoo.es

